Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| import torch | |
| # Modelle und Tokenizer laden | |
| # model_names = { | |
| # "LeoLM_13B": "LeoLM/leo-hessianai-13b", | |
| # "Occiglot_7B": "occiglot/occiglot-7b-de-en", | |
| # "LLaMA2_13B": "meta-llama/Llama-2-13b-hf" | |
| # } | |
| model_names = { | |
| "LeoLM_7B": "LeoLM/leo-hessianai-7b", | |
| "Occiglot_7B": "occiglot/occiglot-7b-de-en" | |
| } | |
| # Tokenizer und Modelle vorbereiten | |
| tokenizers = {name: AutoTokenizer.from_pretrained(model) for name, model in model_names.items()} | |
| models = {name: AutoModelForCausalLM.from_pretrained(model) for name, model in model_names.items()} | |
| # Funktion zur Generierung der Antwort | |
| def generate_response(model_choice, prompt): | |
| tokenizer = tokenizers[model_choice] | |
| model = models[model_choice] | |
| inputs = tokenizer(prompt, return_tensors="pt") | |
| outputs = model.generate(inputs["input_ids"], max_new_tokens=100, do_sample=True) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| # Gradio Interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Vergleich von LLMs: LeoLM und Occiglot") | |
| with gr.Row(): | |
| model_choice = gr.Radio(list(model_names.keys()), label="Modell auswählen") | |
| prompt = gr.Textbox(label="Frage stellen", placeholder="Was sind die Hauptursachen für Bluthochdruck?") | |
| output = gr.Textbox(label="Antwort") | |
| submit_button = gr.Button("Antwort generieren") | |
| submit_button.click(generate_response, inputs=[model_choice, prompt], outputs=output) | |
| # App starten | |
| demo.launch() |