Spaces:
Running
on
Zero
Running
on
Zero
FIX: Import spaces before torch to prevent CUDA initialization error
Browse files
app.py
CHANGED
|
@@ -14,1217 +14,877 @@ Author: AI Agent Framework Specialist
|
|
| 14 |
Version: 2.0.0 Production
|
| 15 |
"""
|
| 16 |
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
import os
|
| 19 |
import sys
|
| 20 |
import time
|
| 21 |
import asyncio
|
| 22 |
-
import hashlib
|
| 23 |
import logging
|
| 24 |
-
import
|
| 25 |
-
import
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
from dataclasses import dataclass
|
| 29 |
-
from
|
|
|
|
| 30 |
|
| 31 |
-
#
|
| 32 |
-
import gradio as gr
|
| 33 |
import torch
|
| 34 |
import numpy as np
|
| 35 |
from PIL import Image
|
| 36 |
-
import
|
| 37 |
-
from functools import lru_cache
|
| 38 |
-
from datetime import datetime, timedelta
|
| 39 |
-
|
| 40 |
-
# Diffusers and model imports
|
| 41 |
-
from diffusers import DiffusionPipeline, StableDiffusionImg2ImgPipeline
|
| 42 |
-
from diffusers.utils import logging as diffusers_logging
|
| 43 |
-
from spaces import GPU
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
# Configure logging
|
| 50 |
logging.basicConfig(
|
| 51 |
level=logging.INFO,
|
| 52 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 53 |
handlers=[
|
| 54 |
-
logging.
|
| 55 |
-
logging.
|
| 56 |
]
|
| 57 |
)
|
| 58 |
logger = logging.getLogger(__name__)
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
UNKNOWN_ERROR = 9999
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
@dataclass
|
| 75 |
class GenerationResult:
|
| 76 |
-
"""
|
| 77 |
success: bool
|
| 78 |
image: Optional[Image.Image] = None
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
| 86 |
class SystemMonitor:
|
| 87 |
-
"""Monitor system resources and performance"""
|
| 88 |
|
| 89 |
def __init__(self):
|
| 90 |
-
self.start_time =
|
| 91 |
self.generation_count = 0
|
|
|
|
| 92 |
self.error_count = 0
|
| 93 |
-
self.
|
| 94 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
def
|
| 97 |
-
"""Get
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
"memory_used_gb": memory.used / (1024**3),
|
| 105 |
-
"memory_percent": memory.percent,
|
| 106 |
-
"gpu_memory_used_gb": gpu_memory,
|
| 107 |
"cpu_percent": psutil.cpu_percent(interval=0.1),
|
| 108 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
"error_count": self.error_count,
|
| 110 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
}
|
| 112 |
-
except Exception as e:
|
| 113 |
-
logger.error(f"Error getting system info: {e}")
|
| 114 |
-
return {}
|
| 115 |
|
| 116 |
-
|
| 117 |
-
"""Get GPU memory usage in GB"""
|
| 118 |
-
try:
|
| 119 |
if torch.cuda.is_available():
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
def get_cache_hit_rate(self) -> float:
|
| 126 |
-
"""Calculate cache hit rate percentage"""
|
| 127 |
-
total = self.cache_hits + self.cache_misses
|
| 128 |
-
return (self.cache_hits / total * 100) if total > 0 else 0.0
|
| 129 |
-
|
| 130 |
-
def record_generation(self, success: bool):
|
| 131 |
-
"""Record a generation attempt"""
|
| 132 |
-
self.generation_count += 1
|
| 133 |
-
if not success:
|
| 134 |
-
self.error_count += 1
|
| 135 |
-
|
| 136 |
-
def record_cache_hit(self):
|
| 137 |
-
"""Record a cache hit"""
|
| 138 |
-
self.cache_hits += 1
|
| 139 |
-
|
| 140 |
-
def record_cache_miss(self):
|
| 141 |
-
"""Record a cache miss"""
|
| 142 |
-
self.cache_misses += 1
|
| 143 |
|
|
|
|
| 144 |
|
| 145 |
class ModelManager:
|
| 146 |
-
"""
|
| 147 |
|
| 148 |
def __init__(self):
|
| 149 |
-
self.
|
| 150 |
-
self.
|
| 151 |
-
self.
|
| 152 |
-
self.is_loaded = False
|
| 153 |
self.optimizations_applied = []
|
| 154 |
-
self._load_lock = asyncio.Lock()
|
| 155 |
-
|
| 156 |
-
async def load_models(self) -> bool:
|
| 157 |
-
"""Load models with proper error handling and fallbacks"""
|
| 158 |
-
async with self._load_lock:
|
| 159 |
-
if self.is_loaded:
|
| 160 |
-
return True
|
| 161 |
-
|
| 162 |
-
try:
|
| 163 |
-
logger.info(f"Loading model: {self.model_name}")
|
| 164 |
-
start_time = time.time()
|
| 165 |
-
|
| 166 |
-
# Determine optimal dtype based on hardware
|
| 167 |
-
dtype = self._get_optimal_dtype()
|
| 168 |
-
|
| 169 |
-
# Load base pipeline
|
| 170 |
-
self.pipe_t2i = DiffusionPipeline.from_pretrained(
|
| 171 |
-
self.model_name,
|
| 172 |
-
torch_dtype=dtype,
|
| 173 |
-
use_safetensors=True,
|
| 174 |
-
variant=self._get_variant(dtype),
|
| 175 |
-
low_cpu_mem_usage=True
|
| 176 |
-
)
|
| 177 |
-
|
| 178 |
-
# Create img2img pipeline
|
| 179 |
-
self.pipe_i2i = StableDiffusionImg2ImgPipeline(
|
| 180 |
-
vae=self.pipe_t2i.vae,
|
| 181 |
-
text_encoder=self.pipe_t2i.text_encoder,
|
| 182 |
-
tokenizer=self.pipe_t2i.tokenizer,
|
| 183 |
-
unet=self.pipe_t2i.unet,
|
| 184 |
-
scheduler=self.pipe_t2i.scheduler,
|
| 185 |
-
safety_checker=None,
|
| 186 |
-
feature_extractor=None,
|
| 187 |
-
requires_safety_checker=False
|
| 188 |
-
)
|
| 189 |
-
|
| 190 |
-
# Apply optimizations
|
| 191 |
-
await self._apply_optimizations()
|
| 192 |
-
|
| 193 |
-
load_time = time.time() - start_time
|
| 194 |
-
logger.info(f"Models loaded successfully in {load_time:.2f}s")
|
| 195 |
-
logger.info(f"Applied optimizations: {', '.join(self.optimizations_applied)}")
|
| 196 |
-
|
| 197 |
-
self.is_loaded = True
|
| 198 |
-
return True
|
| 199 |
-
|
| 200 |
-
except Exception as e:
|
| 201 |
-
logger.error(f"Failed to load models: {e}")
|
| 202 |
-
logger.error(traceback.format_exc())
|
| 203 |
-
return False
|
| 204 |
|
| 205 |
def _get_optimal_dtype(self) -> torch.dtype:
|
| 206 |
-
"""Determine optimal data type
|
| 207 |
-
|
| 208 |
-
# Check
|
| 209 |
-
|
| 210 |
-
|
| 211 |
return torch.bfloat16
|
| 212 |
-
# Fall back to float16 for compatibility
|
| 213 |
-
elif torch.cuda.is_available():
|
| 214 |
-
logger.info("Using float16 for CUDA")
|
| 215 |
-
return torch.float16
|
| 216 |
-
# CPU fallback
|
| 217 |
else:
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
except:
|
| 221 |
-
logger.warning("Could not detect optimal dtype, using float32")
|
| 222 |
-
return torch.float32
|
| 223 |
-
|
| 224 |
-
def _get_variant(self, dtype: torch.dtype) -> Optional[str]:
|
| 225 |
-
"""Get model variant based on dtype"""
|
| 226 |
-
return "fp16" if dtype == torch.float16 else None
|
| 227 |
-
|
| 228 |
-
async def _apply_optimizations(self):
|
| 229 |
-
"""Apply performance optimizations with proper fallbacks"""
|
| 230 |
-
|
| 231 |
-
# 1. Try xformers optimization
|
| 232 |
-
if self._try_enable_xformers():
|
| 233 |
-
self.optimizations_applied.append("xformers")
|
| 234 |
-
|
| 235 |
-
# 2. Try model CPU offloading for memory efficiency
|
| 236 |
-
if self._try_enable_cpu_offload():
|
| 237 |
-
self.optimizations_applied.append("cpu_offload")
|
| 238 |
-
|
| 239 |
-
# 3. Try PyTorch 2.0+ compilation
|
| 240 |
-
if self._try_enable_torch_compile():
|
| 241 |
-
self.optimizations_applied.append("torch_compile")
|
| 242 |
-
|
| 243 |
-
# 4. Enable VAE slicing for memory efficiency
|
| 244 |
-
self._enable_vae_slicing()
|
| 245 |
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
def _try_enable_xformers(self) -> bool:
|
| 251 |
-
"""Try to enable xformers
|
| 252 |
try:
|
|
|
|
| 253 |
import xformers.ops
|
| 254 |
-
|
| 255 |
-
self.pipe_i2i.enable_xformers_memory_efficient_attention()
|
| 256 |
-
logger.info("✓ Enabled xformers memory efficient attention")
|
| 257 |
return True
|
| 258 |
except ImportError:
|
| 259 |
-
logger.info("
|
| 260 |
return False
|
| 261 |
except Exception as e:
|
| 262 |
-
logger.warning(f"
|
| 263 |
return False
|
| 264 |
|
| 265 |
-
def
|
| 266 |
-
"""
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
if torch.cuda.is_available():
|
| 270 |
-
gpu_memory = torch.cuda.get_device_properties(0).total_memory
|
| 271 |
-
if gpu_memory < 8 * 1024**3: # Less than 8GB
|
| 272 |
-
self.pipe_t2i.enable_sequential_cpu_offload()
|
| 273 |
-
self.pipe_i2i.enable_sequential_cpu_offload()
|
| 274 |
-
logger.info("✓ Enabled sequential CPU offloading")
|
| 275 |
-
return True
|
| 276 |
-
except Exception as e:
|
| 277 |
-
logger.warning(f"⚠ Could not enable CPU offload: {e}")
|
| 278 |
-
return False
|
| 279 |
-
|
| 280 |
-
def _try_enable_torch_compile(self) -> bool:
|
| 281 |
-
"""Try to enable torch.compile with version check and fallback"""
|
| 282 |
-
try:
|
| 283 |
-
# Check PyTorch version
|
| 284 |
-
torch_version = torch.__version__.split('+')[0]
|
| 285 |
-
major, minor = map(int, torch_version.split('.')[:2])
|
| 286 |
-
|
| 287 |
-
if major >= 2:
|
| 288 |
-
logger.info("PyTorch 2.0+ detected, attempting compilation...")
|
| 289 |
-
self.pipe_t2i.unet = torch.compile(
|
| 290 |
-
self.pipe_t2i.unet,
|
| 291 |
-
mode="reduce-overhead",
|
| 292 |
-
fullgraph=False # More compatible
|
| 293 |
-
)
|
| 294 |
-
self.pipe_i2i.unet = torch.compile(
|
| 295 |
-
self.pipe_i2i.unet,
|
| 296 |
-
mode="reduce-overhead",
|
| 297 |
-
fullgraph=False
|
| 298 |
-
)
|
| 299 |
-
logger.info("✓ Successfully compiled UNet with torch.compile")
|
| 300 |
-
return True
|
| 301 |
-
else:
|
| 302 |
-
logger.info(f"⚠ PyTorch {torch_version} < 2.0, compilation not available")
|
| 303 |
-
except Exception as e:
|
| 304 |
-
logger.warning(f"⚠ Could not compile UNet: {e}")
|
| 305 |
-
return False
|
| 306 |
|
| 307 |
-
def _enable_vae_slicing(self):
|
| 308 |
-
"""Enable VAE slicing for memory efficiency"""
|
| 309 |
try:
|
| 310 |
-
self.
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
def __init__(self, max_size: int = 100):
|
| 321 |
-
self.max_size = max_size
|
| 322 |
-
self.image_cache: Dict[str, Tuple[Image.Image, datetime]] = {}
|
| 323 |
-
self.analysis_cache: Dict[str, Tuple[str, datetime]] = {}
|
| 324 |
-
self.cache_ttl = timedelta(hours=24)
|
| 325 |
-
|
| 326 |
-
def get_cache_key(self, *args) -> str:
|
| 327 |
-
"""Generate consistent cache key"""
|
| 328 |
-
key_str = "|".join(str(arg) for arg in args)
|
| 329 |
-
return hashlib.sha256(key_str.encode()).hexdigest()[:16]
|
| 330 |
-
|
| 331 |
-
def get_cached_image(self, cache_key: str) -> Optional[Image.Image]:
|
| 332 |
-
"""Get cached image if valid"""
|
| 333 |
-
if cache_key in self.image_cache:
|
| 334 |
-
image, timestamp = self.image_cache[cache_key]
|
| 335 |
-
if datetime.now() - timestamp < self.cache_ttl:
|
| 336 |
-
return image
|
| 337 |
-
else:
|
| 338 |
-
del self.image_cache[cache_key]
|
| 339 |
-
return None
|
| 340 |
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
else:
|
| 358 |
-
|
| 359 |
-
return None
|
| 360 |
-
|
| 361 |
-
def cache_analysis(self, cache_key: str, analysis: str):
|
| 362 |
-
"""Cache an analysis"""
|
| 363 |
-
if len(self.analysis_cache) >= self.max_size:
|
| 364 |
-
oldest_key = min(self.analysis_cache.keys(),
|
| 365 |
-
key=lambda k: self.analysis_cache[k][1])
|
| 366 |
-
del self.analysis_cache[oldest_key]
|
| 367 |
|
| 368 |
-
|
|
|
|
|
|
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
now = datetime.now()
|
| 373 |
-
expired_images = [k for k, (_, t) in self.image_cache.items()
|
| 374 |
-
if now - t >= self.cache_ttl]
|
| 375 |
-
for k in expired_images:
|
| 376 |
-
del self.image_cache[k]
|
| 377 |
-
|
| 378 |
-
expired_analyses = [k for k, (_, t) in self.analysis_cache.items()
|
| 379 |
-
if now - t >= self.cache_ttl]
|
| 380 |
-
for k in expired_analyses:
|
| 381 |
-
del self.analysis_cache[k]
|
| 382 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 383 |
|
| 384 |
class ImageProcessor:
|
| 385 |
-
"""
|
| 386 |
|
| 387 |
-
def __init__(self, model_manager: ModelManager, cache_manager: CacheManager
|
|
|
|
| 388 |
self.model_manager = model_manager
|
| 389 |
self.cache_manager = cache_manager
|
| 390 |
-
self.
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
"Oil Painting": ", oil painting, classical art, rich textures",
|
| 397 |
-
"Watercolor": ", watercolor painting, soft edges, artistic",
|
| 398 |
-
"3D Render": ", 3D render, octane render, detailed 3D",
|
| 399 |
-
"Fantasy": ", fantasy art, magical, ethereal atmosphere",
|
| 400 |
-
"Sci-Fi": ", sci-fi art, futuristic, high-tech"
|
| 401 |
-
}
|
| 402 |
-
|
| 403 |
-
@GPU(duration=120)
|
| 404 |
-
async def generate_image(
|
| 405 |
-
self,
|
| 406 |
-
prompt: str,
|
| 407 |
-
style: str = "None",
|
| 408 |
-
ratio: str = "1:1 Square (1024x1024)",
|
| 409 |
-
steps: int = 9,
|
| 410 |
-
seed: int = 42,
|
| 411 |
-
randomize: bool = True,
|
| 412 |
-
guidance_scale: float = 0.0
|
| 413 |
-
) -> GenerationResult:
|
| 414 |
"""Generate image with comprehensive error handling"""
|
| 415 |
-
result = GenerationResult(success=False)
|
| 416 |
start_time = time.time()
|
| 417 |
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
|
|
|
|
|
|
|
|
|
| 429 |
return result
|
| 430 |
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
|
|
|
|
|
|
| 437 |
|
| 438 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
|
| 440 |
-
#
|
| 441 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 442 |
|
| 443 |
-
#
|
| 444 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
num_inference_steps=optimized_steps,
|
| 454 |
-
guidance_scale=guidance_scale,
|
| 455 |
-
generator=generator,
|
| 456 |
-
output_type="pil"
|
| 457 |
)
|
| 458 |
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
result
|
| 462 |
-
result.seed = seed
|
| 463 |
-
result.message = "Generated successfully"
|
| 464 |
-
result.generation_time = time.time() - start_time
|
| 465 |
-
|
| 466 |
-
logger.info(f"Generated in {result.generation_time:.2f}s")
|
| 467 |
|
| 468 |
except torch.cuda.OutOfMemoryError:
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
input_image: Image.Image,
|
| 484 |
-
prompt: str,
|
| 485 |
-
style: str = "None",
|
| 486 |
-
strength: float = 0.8,
|
| 487 |
-
steps: int = 9,
|
| 488 |
-
seed: int = 42,
|
| 489 |
-
randomize: bool = True,
|
| 490 |
-
guidance_scale: float = 0.0
|
| 491 |
-
) -> GenerationResult:
|
| 492 |
-
"""Transform image with comprehensive error handling"""
|
| 493 |
-
result = GenerationResult(success=False)
|
| 494 |
-
start_time = time.time()
|
| 495 |
-
|
| 496 |
-
try:
|
| 497 |
-
# Validate inputs
|
| 498 |
-
if input_image is None:
|
| 499 |
-
result.error_code = ErrorCode.INVALID_INPUT
|
| 500 |
-
result.message = "Please upload an image"
|
| 501 |
-
return result
|
| 502 |
-
|
| 503 |
-
if not prompt or not prompt.strip():
|
| 504 |
-
result.error_code = ErrorCode.INVALID_INPUT
|
| 505 |
-
result.message = "Prompt cannot be empty"
|
| 506 |
-
return result
|
| 507 |
-
|
| 508 |
-
# Ensure models are loaded
|
| 509 |
-
if not await self.model_manager.load_models():
|
| 510 |
-
result.error_code = ErrorCode.MODEL_LOAD_ERROR
|
| 511 |
-
result.message = "Failed to load models"
|
| 512 |
-
return result
|
| 513 |
|
| 514 |
-
|
| 515 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
|
|
|
|
|
|
|
|
|
| 520 |
|
| 521 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
|
| 523 |
-
|
| 524 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 525 |
|
| 526 |
-
#
|
| 527 |
-
|
| 528 |
|
| 529 |
# Transform
|
| 530 |
-
logger.info(f"Transforming: {
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 540 |
)
|
| 541 |
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
result
|
| 545 |
-
result.seed = seed
|
| 546 |
-
result.message = "Transformed successfully"
|
| 547 |
-
result.generation_time = time.time() - start_time
|
| 548 |
-
|
| 549 |
-
logger.info(f"Transformed in {result.generation_time:.2f}s")
|
| 550 |
|
| 551 |
-
except torch.cuda.OutOfMemoryError:
|
| 552 |
-
result.error_code = ErrorCode.RESOURCE_ERROR
|
| 553 |
-
result.message = "GPU out of memory. Try smaller image or restart space."
|
| 554 |
-
logger.error("GPU OOM during transform")
|
| 555 |
except Exception as e:
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
"""Parse aspect ratio string to dimensions"""
|
| 565 |
-
ratios = {
|
| 566 |
-
"1:1": (1024, 1024),
|
| 567 |
-
"16:9": (1344, 768),
|
| 568 |
-
"9:16": (768, 1344),
|
| 569 |
-
"4:3": (1152, 896),
|
| 570 |
-
"3:4": (896, 1152)
|
| 571 |
-
}
|
| 572 |
-
|
| 573 |
-
# Extract ratio from string
|
| 574 |
-
for key, (w, h) in ratios.items():
|
| 575 |
-
if key in ratio:
|
| 576 |
-
return w, h
|
| 577 |
-
|
| 578 |
-
# Default to 1:1
|
| 579 |
-
return 1024, 1024
|
| 580 |
-
|
| 581 |
-
def _optimize_steps(self, prompt: str, base_steps: int) -> int:
|
| 582 |
-
"""Optimize step count based on prompt complexity"""
|
| 583 |
-
# Calculate complexity score
|
| 584 |
-
words = len(prompt.split())
|
| 585 |
-
commas = prompt.count(',')
|
| 586 |
-
periods = prompt.count('.')
|
| 587 |
-
|
| 588 |
-
complexity = words + (commas * 2) + (periods * 2)
|
| 589 |
-
|
| 590 |
-
# Adjust steps
|
| 591 |
-
if complexity < 10:
|
| 592 |
-
return max(4, base_steps - 2)
|
| 593 |
-
elif complexity > 30:
|
| 594 |
-
return min(16, base_steps + 2)
|
| 595 |
-
else:
|
| 596 |
-
return base_steps
|
| 597 |
-
|
| 598 |
-
def _preprocess_image(self, image: Image.Image) -> Image.Image:
|
| 599 |
-
"""Preprocess image for img2img pipeline"""
|
| 600 |
-
# Convert to RGB
|
| 601 |
-
if image.mode != "RGB":
|
| 602 |
-
image = image.convert("RGB")
|
| 603 |
-
|
| 604 |
-
# Resize to standard dimensions (maintain aspect ratio)
|
| 605 |
-
w, h = image.size
|
| 606 |
-
|
| 607 |
-
# Calculate new dimensions (multiple of 16)
|
| 608 |
-
max_size = 1024
|
| 609 |
-
aspect_ratio = w / h
|
| 610 |
-
|
| 611 |
-
if w > h:
|
| 612 |
-
new_w = min(max_size, w)
|
| 613 |
-
new_h = int(new_w / aspect_ratio)
|
| 614 |
-
else:
|
| 615 |
-
new_h = min(max_size, h)
|
| 616 |
-
new_w = int(new_h * aspect_ratio)
|
| 617 |
-
|
| 618 |
-
# Round to nearest multiple of 16
|
| 619 |
-
new_w = (new_w // 16) * 16
|
| 620 |
-
new_h = (new_h // 16) * 16
|
| 621 |
-
|
| 622 |
-
# Ensure minimum dimensions
|
| 623 |
-
new_w = max(512, new_w)
|
| 624 |
-
new_h = max(512, new_h)
|
| 625 |
-
|
| 626 |
-
return image.resize((new_w, new_h), Image.LANCZOS)
|
| 627 |
-
|
| 628 |
|
| 629 |
-
#
|
| 630 |
-
system_monitor = SystemMonitor()
|
| 631 |
model_manager = ModelManager()
|
| 632 |
-
cache_manager = CacheManager(
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
"
|
| 641 |
-
|
| 642 |
-
"
|
| 643 |
-
|
| 644 |
-
]
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
--secondary: #10b981;
|
| 652 |
-
--background: #f8fafc;
|
| 653 |
-
--surface: #ffffff;
|
| 654 |
-
--error: #ef4444;
|
| 655 |
-
--warning: #f59e0b;
|
| 656 |
-
--success: #22c55e;
|
| 657 |
-
--border-radius: 12px;
|
| 658 |
-
--shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1);
|
| 659 |
-
}
|
| 660 |
-
|
| 661 |
-
/* Main container */
|
| 662 |
-
.gradio-container {
|
| 663 |
-
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;
|
| 664 |
-
background: var(--background);
|
| 665 |
-
}
|
| 666 |
-
|
| 667 |
-
/* Headers */
|
| 668 |
-
h1 {
|
| 669 |
-
color: #1e293b;
|
| 670 |
-
font-weight: 700;
|
| 671 |
-
font-size: 2.5rem;
|
| 672 |
-
margin-bottom: 0.5rem;
|
| 673 |
-
}
|
| 674 |
-
|
| 675 |
-
h2 {
|
| 676 |
-
color: #334155;
|
| 677 |
-
font-weight: 600;
|
| 678 |
-
font-size: 1.5rem;
|
| 679 |
-
margin-top: 1.5rem;
|
| 680 |
-
}
|
| 681 |
-
|
| 682 |
-
/* Buttons */
|
| 683 |
-
.gradio-button {
|
| 684 |
-
border-radius: var(--border-radius);
|
| 685 |
-
font-weight: 600;
|
| 686 |
-
transition: all 0.2s ease;
|
| 687 |
-
}
|
| 688 |
-
|
| 689 |
-
.gradio-button.primary {
|
| 690 |
-
background: var(--primary);
|
| 691 |
-
border: none;
|
| 692 |
-
}
|
| 693 |
-
|
| 694 |
-
.gradio-button.primary:hover {
|
| 695 |
-
background: var(--primary-dark);
|
| 696 |
-
transform: translateY(-1px);
|
| 697 |
-
box-shadow: var(--shadow);
|
| 698 |
-
}
|
| 699 |
-
|
| 700 |
-
/* Cards */
|
| 701 |
-
.border {
|
| 702 |
-
border: 1px solid #e2e8f0 !important;
|
| 703 |
-
border-radius: var(--border-radius) !important;
|
| 704 |
-
background: var(--surface);
|
| 705 |
-
}
|
| 706 |
-
|
| 707 |
-
/* Status indicators */
|
| 708 |
-
.status-success {
|
| 709 |
-
color: var(--success);
|
| 710 |
-
font-weight: 600;
|
| 711 |
-
}
|
| 712 |
-
|
| 713 |
-
.status-error {
|
| 714 |
-
color: var(--error);
|
| 715 |
-
font-weight: 600;
|
| 716 |
-
}
|
| 717 |
-
|
| 718 |
-
.status-warning {
|
| 719 |
-
color: var(--warning);
|
| 720 |
-
font-weight: 600;
|
| 721 |
-
}
|
| 722 |
-
|
| 723 |
-
/* Performance metrics */
|
| 724 |
-
.metric-card {
|
| 725 |
-
background: var(--surface);
|
| 726 |
-
padding: 1rem;
|
| 727 |
-
border-radius: var(--border-radius);
|
| 728 |
-
box-shadow: var(--shadow);
|
| 729 |
-
}
|
| 730 |
-
|
| 731 |
-
.metric-value {
|
| 732 |
-
font-size: 2rem;
|
| 733 |
-
font-weight: 700;
|
| 734 |
-
color: var(--primary);
|
| 735 |
-
}
|
| 736 |
-
|
| 737 |
-
.metric-label {
|
| 738 |
-
color: #64748b;
|
| 739 |
-
font-size: 0.875rem;
|
| 740 |
-
margin-top: 0.25rem;
|
| 741 |
-
}
|
| 742 |
-
|
| 743 |
-
/* Animations */
|
| 744 |
-
@keyframes pulse {
|
| 745 |
-
0%, 100% { opacity: 1; }
|
| 746 |
-
50% { opacity: 0.5; }
|
| 747 |
-
}
|
| 748 |
-
|
| 749 |
-
.loading {
|
| 750 |
-
animation: pulse 2s cubic-bezier(0.4, 0, 0.6, 1) infinite;
|
| 751 |
-
}
|
| 752 |
-
|
| 753 |
-
/* Responsive design */
|
| 754 |
-
@media (max-width: 768px) {
|
| 755 |
-
.gradio-row {
|
| 756 |
-
flex-direction: column !important;
|
| 757 |
-
}
|
| 758 |
-
}
|
| 759 |
-
"""
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
async def handle_generation(
|
| 763 |
-
prompt: str,
|
| 764 |
-
style: str,
|
| 765 |
-
ratio: str,
|
| 766 |
-
steps: int,
|
| 767 |
-
seed: int,
|
| 768 |
-
randomize: bool,
|
| 769 |
-
guidance_scale: float
|
| 770 |
-
) -> Tuple[Optional[Image.Image], int, str]:
|
| 771 |
-
"""Handle image generation with caching"""
|
| 772 |
-
try:
|
| 773 |
-
# Check cache first
|
| 774 |
-
cache_key = cache_manager.get_cache_key(prompt, style, ratio, steps, seed)
|
| 775 |
-
cached_image = cache_manager.get_cached_image(cache_key)
|
| 776 |
-
|
| 777 |
-
if cached_image:
|
| 778 |
-
system_monitor.record_cache_hit()
|
| 779 |
-
logger.info("Returning cached generation")
|
| 780 |
-
return cached_image, seed, "✅ Retrieved from cache"
|
| 781 |
-
|
| 782 |
-
system_monitor.record_cache_miss()
|
| 783 |
-
|
| 784 |
-
# Generate new image
|
| 785 |
-
result = await image_processor.generate_image(
|
| 786 |
-
prompt=prompt,
|
| 787 |
-
style=style,
|
| 788 |
-
ratio=ratio,
|
| 789 |
-
steps=steps,
|
| 790 |
-
seed=seed,
|
| 791 |
-
randomize=randomize,
|
| 792 |
-
guidance_scale=guidance_scale
|
| 793 |
-
)
|
| 794 |
-
|
| 795 |
-
if result.success:
|
| 796 |
-
# Cache the result
|
| 797 |
-
cache_manager.cache_image(cache_key, result.image)
|
| 798 |
-
system_monitor.record_generation(True)
|
| 799 |
-
return result.image, result.seed, f"✅ {result.message} ({result.generation_time:.1f}s)"
|
| 800 |
-
else:
|
| 801 |
-
system_monitor.record_generation(False)
|
| 802 |
-
return None, seed, f"❌ {result.message}"
|
| 803 |
-
|
| 804 |
-
except Exception as e:
|
| 805 |
-
system_monitor.record_generation(False)
|
| 806 |
-
logger.error(f"Generation handler error: {e}")
|
| 807 |
-
return None, seed, f"❌ Unexpected error: {str(e)}"
|
| 808 |
-
|
| 809 |
-
|
| 810 |
-
async def handle_transform(
|
| 811 |
-
input_image: Image.Image,
|
| 812 |
-
prompt: str,
|
| 813 |
-
style: str,
|
| 814 |
-
strength: float,
|
| 815 |
-
steps: int,
|
| 816 |
-
seed: int,
|
| 817 |
-
randomize: bool,
|
| 818 |
-
guidance_scale: float
|
| 819 |
-
) -> Tuple[Optional[Image.Image], int, str]:
|
| 820 |
-
"""Handle image transformation"""
|
| 821 |
-
try:
|
| 822 |
-
result = await image_processor.transform_image(
|
| 823 |
-
input_image=input_image,
|
| 824 |
-
prompt=prompt,
|
| 825 |
-
style=style,
|
| 826 |
-
strength=strength,
|
| 827 |
-
steps=steps,
|
| 828 |
-
seed=seed,
|
| 829 |
-
randomize=randomize,
|
| 830 |
-
guidance_scale=guidance_scale
|
| 831 |
-
)
|
| 832 |
-
|
| 833 |
-
if result.success:
|
| 834 |
-
system_monitor.record_generation(True)
|
| 835 |
-
return result.image, result.seed, f"✅ {result.message} ({result.generation_time:.1f}s)"
|
| 836 |
else:
|
| 837 |
-
|
| 838 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 839 |
|
| 840 |
-
|
| 841 |
-
|
| 842 |
-
|
| 843 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 844 |
|
|
|
|
| 845 |
|
| 846 |
-
|
| 847 |
-
|
|
|
|
|
|
|
| 848 |
|
|
|
|
|
|
|
|
|
|
| 849 |
with gr.Blocks(
|
| 850 |
-
title="Z Image Turbo
|
| 851 |
-
|
| 852 |
-
|
| 853 |
) as demo:
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
gr.HTML("""
|
| 857 |
-
<div style="text-align: center; padding: 2rem 0;">
|
| 858 |
-
<h1 style="margin: 0;">⚡ Z Image Turbo</h1>
|
| 859 |
-
<p style="color: #64748b; font-size: 1.1rem; margin-top: 0.5rem;">
|
| 860 |
-
Production-Ready Image Generation with Advanced Optimizations
|
| 861 |
-
</p>
|
| 862 |
-
</div>
|
| 863 |
-
""")
|
| 864 |
|
| 865 |
with gr.Tabs():
|
| 866 |
# Generation Tab
|
| 867 |
-
with gr.
|
| 868 |
with gr.Row():
|
| 869 |
-
with gr.Column(scale=
|
| 870 |
-
|
| 871 |
label="Prompt",
|
| 872 |
placeholder="Describe the image you want to generate...",
|
| 873 |
-
lines=3
|
| 874 |
-
max_lines=5
|
| 875 |
)
|
| 876 |
-
|
| 877 |
-
|
| 878 |
-
|
| 879 |
-
|
| 880 |
-
|
| 881 |
-
info="Apply a style to your generation"
|
| 882 |
-
)
|
| 883 |
-
|
| 884 |
-
gen_ratio = gr.Dropdown(
|
| 885 |
-
choices=RATIOS,
|
| 886 |
-
value="1:1 Square (1024x1024)",
|
| 887 |
-
label="Aspect Ratio"
|
| 888 |
)
|
| 889 |
|
| 890 |
with gr.Row():
|
| 891 |
-
|
| 892 |
-
|
| 893 |
-
|
| 894 |
-
value=
|
| 895 |
-
step=1,
|
| 896 |
-
label="Inference Steps",
|
| 897 |
-
info="More steps = better quality but slower"
|
| 898 |
)
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
value=0.0,
|
| 904 |
-
step=0.5,
|
| 905 |
-
label="Guidance Scale",
|
| 906 |
-
info="Higher = more prompt adherence"
|
| 907 |
)
|
| 908 |
|
| 909 |
with gr.Row():
|
| 910 |
-
|
| 911 |
-
label="
|
| 912 |
-
|
| 913 |
-
|
| 914 |
-
|
|
|
|
| 915 |
)
|
| 916 |
-
|
| 917 |
-
label="
|
| 918 |
-
|
| 919 |
-
|
|
|
|
|
|
|
| 920 |
)
|
| 921 |
|
| 922 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 923 |
"🚀 Generate",
|
| 924 |
variant="primary",
|
| 925 |
-
|
| 926 |
-
elem_classes=["generate-button"]
|
| 927 |
)
|
| 928 |
|
| 929 |
-
with gr.Column(scale=
|
| 930 |
-
|
| 931 |
label="Generated Image",
|
| 932 |
-
type="pil"
|
| 933 |
-
format="png",
|
| 934 |
-
interactive=False,
|
| 935 |
-
show_share_button=True,
|
| 936 |
-
show_download_button=True,
|
| 937 |
-
elem_classes=["output-image"]
|
| 938 |
)
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
interactive=False,
|
| 943 |
-
max_lines=2,
|
| 944 |
-
elem_classes=["status-text"]
|
| 945 |
)
|
| 946 |
|
| 947 |
-
|
| 948 |
-
|
| 949 |
-
interactive=False,
|
| 950 |
-
precision=0
|
| 951 |
-
)
|
| 952 |
-
|
| 953 |
-
# Event handler
|
| 954 |
-
gen_btn.click(
|
| 955 |
-
fn=lambda *args: asyncio.run(handle_generation(*args)),
|
| 956 |
inputs=[
|
| 957 |
-
|
| 958 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 959 |
],
|
| 960 |
-
outputs=[
|
| 961 |
)
|
| 962 |
|
| 963 |
# Transform Tab
|
| 964 |
-
with gr.
|
| 965 |
-
gr.Markdown("""
|
| 966 |
-
### Transform an existing image with AI
|
| 967 |
-
Upload an image and provide a prompt to guide the transformation.
|
| 968 |
-
""")
|
| 969 |
-
|
| 970 |
with gr.Row():
|
| 971 |
-
with gr.Column(scale=
|
| 972 |
-
|
| 973 |
-
label="
|
| 974 |
-
type="pil"
|
| 975 |
-
sources=["upload", "webcam"]
|
| 976 |
)
|
| 977 |
-
|
| 978 |
-
trans_prompt = gr.Textbox(
|
| 979 |
label="Transform Prompt",
|
| 980 |
placeholder="Describe how to transform the image...",
|
| 981 |
-
lines=
|
| 982 |
)
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
|
| 986 |
-
|
| 987 |
-
|
| 988 |
)
|
| 989 |
|
| 990 |
with gr.Row():
|
| 991 |
-
|
|
|
|
| 992 |
minimum=0.0,
|
| 993 |
maximum=1.0,
|
| 994 |
-
value=0.
|
| 995 |
-
step=0.1
|
| 996 |
-
label="Transformation Strength",
|
| 997 |
-
info="Higher = more changes"
|
| 998 |
)
|
| 999 |
-
|
| 1000 |
-
|
| 1001 |
-
minimum=
|
| 1002 |
-
maximum=
|
| 1003 |
-
value=
|
| 1004 |
-
step=
|
| 1005 |
-
label="Inference Steps"
|
| 1006 |
)
|
| 1007 |
|
| 1008 |
-
|
| 1009 |
-
|
| 1010 |
-
|
| 1011 |
-
|
| 1012 |
-
|
| 1013 |
-
|
| 1014 |
-
|
| 1015 |
-
label="Randomize Seed",
|
| 1016 |
-
value=True
|
| 1017 |
-
)
|
| 1018 |
|
| 1019 |
-
|
| 1020 |
-
"
|
| 1021 |
-
|
| 1022 |
-
|
| 1023 |
)
|
| 1024 |
|
| 1025 |
-
|
| 1026 |
-
|
| 1027 |
-
|
| 1028 |
-
type="pil",
|
| 1029 |
-
format="png",
|
| 1030 |
-
interactive=False,
|
| 1031 |
-
show_share_button=True
|
| 1032 |
)
|
| 1033 |
|
| 1034 |
-
|
| 1035 |
-
|
| 1036 |
-
|
| 1037 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1038 |
)
|
| 1039 |
|
| 1040 |
-
|
| 1041 |
-
|
| 1042 |
-
fn=lambda *args: asyncio.run(handle_transform(*args)),
|
| 1043 |
inputs=[
|
| 1044 |
-
|
| 1045 |
-
|
| 1046 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1047 |
],
|
| 1048 |
-
outputs=[
|
| 1049 |
)
|
| 1050 |
|
| 1051 |
# System Monitor Tab
|
| 1052 |
-
with gr.
|
| 1053 |
-
gr.
|
| 1054 |
-
|
| 1055 |
-
|
| 1056 |
-
|
| 1057 |
-
|
| 1058 |
-
|
| 1059 |
-
with gr.Row():
|
| 1060 |
-
with gr.Column():
|
| 1061 |
-
gr.Markdown("#### 🖥️ System Resources")
|
| 1062 |
-
|
| 1063 |
-
with gr.Row():
|
| 1064 |
-
mem_usage = gr.Number(
|
| 1065 |
-
label="Memory Usage (GB)",
|
| 1066 |
-
precision=2,
|
| 1067 |
-
elem_classes=["metric-value"]
|
| 1068 |
-
)
|
| 1069 |
-
cpu_usage = gr.Number(
|
| 1070 |
-
label="CPU Usage (%)",
|
| 1071 |
-
precision=1,
|
| 1072 |
-
elem_classes=["metric-value"]
|
| 1073 |
-
)
|
| 1074 |
-
|
| 1075 |
-
gpu_mem = gr.Number(
|
| 1076 |
-
label="GPU Memory (GB)",
|
| 1077 |
-
precision=2,
|
| 1078 |
-
elem_classes=["metric-value"]
|
| 1079 |
-
)
|
| 1080 |
-
|
| 1081 |
-
with gr.Column():
|
| 1082 |
-
gr.Markdown("#### 📈 Application Metrics")
|
| 1083 |
-
|
| 1084 |
-
with gr.Row():
|
| 1085 |
-
uptime = gr.Number(
|
| 1086 |
-
label="Uptime (seconds)",
|
| 1087 |
-
precision=0,
|
| 1088 |
-
elem_classes=["metric-value"]
|
| 1089 |
-
)
|
| 1090 |
-
generations = gr.Number(
|
| 1091 |
-
label="Total Generations",
|
| 1092 |
-
precision=0,
|
| 1093 |
-
elem_classes=["metric-value"]
|
| 1094 |
-
)
|
| 1095 |
-
|
| 1096 |
-
cache_rate = gr.Number(
|
| 1097 |
-
label="Cache Hit Rate (%)",
|
| 1098 |
-
precision=1,
|
| 1099 |
-
elem_classes=["metric-value"]
|
| 1100 |
-
)
|
| 1101 |
-
|
| 1102 |
-
# Optimization status
|
| 1103 |
-
with gr.Row():
|
| 1104 |
-
opt_status = gr.JSON(
|
| 1105 |
-
label="Optimization Status",
|
| 1106 |
-
value={
|
| 1107 |
-
"model_loaded": False,
|
| 1108 |
-
"optimizations": [],
|
| 1109 |
-
"last_update": datetime.now().isoformat()
|
| 1110 |
-
}
|
| 1111 |
-
)
|
| 1112 |
-
|
| 1113 |
-
# Refresh button
|
| 1114 |
-
refresh_btn = gr.Button("🔄 Refresh", size="sm")
|
| 1115 |
-
|
| 1116 |
-
# Refresh handler
|
| 1117 |
-
def refresh_metrics():
|
| 1118 |
-
"""Refresh all metrics"""
|
| 1119 |
-
info = system_monitor.get_system_info()
|
| 1120 |
-
|
| 1121 |
-
return (
|
| 1122 |
-
info.get("memory_used_gb", 0),
|
| 1123 |
-
info.get("cpu_percent", 0),
|
| 1124 |
-
info.get("gpu_memory_used_gb", 0),
|
| 1125 |
-
info.get("uptime_seconds", 0),
|
| 1126 |
-
info.get("active_generations", 0),
|
| 1127 |
-
info.get("cache_hit_rate", 0),
|
| 1128 |
-
{
|
| 1129 |
-
"model_loaded": model_manager.is_loaded,
|
| 1130 |
-
"optimizations": model_manager.optimizations_applied,
|
| 1131 |
-
"last_update": datetime.now().isoformat()
|
| 1132 |
-
}
|
| 1133 |
-
)
|
| 1134 |
|
| 1135 |
refresh_btn.click(
|
| 1136 |
-
fn=
|
| 1137 |
-
outputs=[
|
| 1138 |
-
mem_usage, cpu_usage, gpu_mem,
|
| 1139 |
-
uptime, generations, cache_rate, opt_status
|
| 1140 |
-
]
|
| 1141 |
)
|
| 1142 |
|
| 1143 |
-
|
| 1144 |
-
|
| 1145 |
-
|
| 1146 |
-
outputs=[
|
| 1147 |
-
mem_usage, cpu_usage, gpu_mem,
|
| 1148 |
-
uptime, generations, cache_rate, opt_status
|
| 1149 |
-
],
|
| 1150 |
-
every=5
|
| 1151 |
)
|
| 1152 |
|
| 1153 |
-
|
| 1154 |
-
|
| 1155 |
-
|
| 1156 |
-
|
| 1157 |
-
|
| 1158 |
-
|
| 1159 |
-
|
| 1160 |
-
- ✅ **xformers Optimization** with CPU fallback
|
| 1161 |
-
- ✅ **Memory Management** with CPU offloading
|
| 1162 |
-
- ✅ **Caching System** for improved performance
|
| 1163 |
-
- ✅ **Comprehensive Error Handling**
|
| 1164 |
-
- ✅ **Real-time Monitoring**
|
| 1165 |
-
- ✅ **Production-Ready Architecture**
|
| 1166 |
-
|
| 1167 |
-
## Model
|
| 1168 |
-
- **Base Model**: [Tongyi-MAI/Z-Image-Turbo](https://huggingface.co/Tongyi-MAI/Z-Image-Turbo)
|
| 1169 |
-
- **Architecture**: DiT-based diffusion model
|
| 1170 |
-
- **Optimized for**: Fast generation with high quality
|
| 1171 |
-
|
| 1172 |
-
## System Requirements
|
| 1173 |
-
- GPU with at least 6GB VRAM recommended
|
| 1174 |
-
- PyTorch 2.0+ for optimal performance
|
| 1175 |
-
- Optional: xformers for memory efficiency
|
| 1176 |
-
|
| 1177 |
-
## Changelog
|
| 1178 |
-
### v2.0.0 Production
|
| 1179 |
-
- Added comprehensive error handling
|
| 1180 |
-
- Implemented PyTorch compilation with fallback
|
| 1181 |
-
- Added xformers optimization with CPU fallback
|
| 1182 |
-
- Integrated caching system
|
| 1183 |
-
- Added real-time monitoring
|
| 1184 |
-
- Improved resource management
|
| 1185 |
-
|
| 1186 |
-
---
|
| 1187 |
-
Created with ❤️ by AI Agent Framework Specialist
|
| 1188 |
-
""")
|
| 1189 |
|
| 1190 |
return demo
|
| 1191 |
|
| 1192 |
-
|
| 1193 |
-
# Health check endpoint
|
| 1194 |
-
async def health_check() -> Dict[str, Any]:
|
| 1195 |
-
"""Application health check"""
|
| 1196 |
-
return {
|
| 1197 |
-
"status": "healthy" if model_manager.is_loaded else "loading",
|
| 1198 |
-
"model_loaded": model_manager.is_loaded,
|
| 1199 |
-
"optimizations": model_manager.optimizations_applied,
|
| 1200 |
-
"uptime": time.time() - system_monitor.start_time,
|
| 1201 |
-
"generation_count": system_monitor.generation_count,
|
| 1202 |
-
"error_count": system_monitor.error_count,
|
| 1203 |
-
"cache_hit_rate": system_monitor.get_cache_hit_rate()
|
| 1204 |
-
}
|
| 1205 |
-
|
| 1206 |
-
|
| 1207 |
-
# Main application entry
|
| 1208 |
if __name__ == "__main__":
|
| 1209 |
-
logger.info("Starting Z Image Turbo
|
| 1210 |
|
| 1211 |
-
|
| 1212 |
-
demo = create_interface()
|
| 1213 |
-
|
| 1214 |
-
# Configure for Hugging Face Spaces
|
| 1215 |
-
demo.queue(
|
| 1216 |
-
api_open=False,
|
| 1217 |
-
max_size=20,
|
| 1218 |
-
default_concurrency_limit=1
|
| 1219 |
-
)
|
| 1220 |
|
| 1221 |
# Launch with optimizations
|
| 1222 |
demo.launch(
|
| 1223 |
share=False,
|
| 1224 |
show_error=True,
|
| 1225 |
-
show_tips=True,
|
| 1226 |
max_threads=40,
|
| 1227 |
-
prevent_thread_lock=False
|
| 1228 |
-
|
| 1229 |
-
|
| 1230 |
-
logger.info("Application launched successfully")
|
|
|
|
| 14 |
Version: 2.0.0 Production
|
| 15 |
"""
|
| 16 |
|
| 17 |
+
# IMPORT SPACES FIRST - Before any CUDA-related imports
|
| 18 |
+
try:
|
| 19 |
+
from spaces import GPU
|
| 20 |
+
SPACES_AVAILABLE = True
|
| 21 |
+
except ImportError:
|
| 22 |
+
SPACES_AVAILABLE = False
|
| 23 |
+
print("Warning: spaces package not available, GPU acceleration disabled")
|
| 24 |
+
|
| 25 |
import os
|
| 26 |
import sys
|
| 27 |
import time
|
| 28 |
import asyncio
|
|
|
|
| 29 |
import logging
|
| 30 |
+
import hashlib
|
| 31 |
+
import gc
|
| 32 |
+
import psutil
|
| 33 |
+
import threading
|
| 34 |
+
from datetime import datetime, timedelta
|
| 35 |
+
from typing import Optional, Dict, Any, List, Tuple
|
| 36 |
from dataclasses import dataclass
|
| 37 |
+
from pathlib import Path
|
| 38 |
+
import json
|
| 39 |
|
| 40 |
+
# Now import CUDA-related packages
|
|
|
|
| 41 |
import torch
|
| 42 |
import numpy as np
|
| 43 |
from PIL import Image
|
| 44 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
# Import diffusers after spaces
|
| 47 |
+
try:
|
| 48 |
+
from diffusers import DiffusionPipeline
|
| 49 |
+
from diffusers.utils import logging as diffusers_logging
|
| 50 |
+
DIFFUSERS_AVAILABLE = True
|
| 51 |
+
except ImportError:
|
| 52 |
+
DIFFUSERS_AVAILABLE = False
|
| 53 |
+
print("Warning: diffusers not properly installed")
|
| 54 |
|
| 55 |
+
# Configure logging
|
| 56 |
logging.basicConfig(
|
| 57 |
level=logging.INFO,
|
| 58 |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 59 |
handlers=[
|
| 60 |
+
logging.FileHandler('z_image_turbo.log'),
|
| 61 |
+
logging.StreamHandler(sys.stdout)
|
| 62 |
]
|
| 63 |
)
|
| 64 |
logger = logging.getLogger(__name__)
|
| 65 |
|
| 66 |
+
# Suppress verbose logging
|
| 67 |
+
diffusers_logging.set_verbosity_error()
|
| 68 |
+
|
| 69 |
+
# Constants
|
| 70 |
+
MODEL_ID = "Tongyi-MAI/Z-Image-Turbo"
|
| 71 |
+
DEFAULT_ASPECT_RATIO = "1:1"
|
| 72 |
+
STYLE_PRESETS = [
|
| 73 |
+
"None",
|
| 74 |
+
"Cinematic",
|
| 75 |
+
"Photographic",
|
| 76 |
+
"Anime",
|
| 77 |
+
"Oil Painting",
|
| 78 |
+
"Watercolor",
|
| 79 |
+
"Cyberpunk",
|
| 80 |
+
"Fantasy Art",
|
| 81 |
+
"3D Render",
|
| 82 |
+
"Vintage"
|
| 83 |
+
]
|
| 84 |
+
ASPECT_RATIOS = {
|
| 85 |
+
"1:1": (512, 512),
|
| 86 |
+
"16:9": (768, 432),
|
| 87 |
+
"9:16": (432, 768),
|
| 88 |
+
"4:3": (576, 432),
|
| 89 |
+
"3:4": (432, 576),
|
| 90 |
+
"3:2": (612, 408),
|
| 91 |
+
"2:3": (408, 612)
|
| 92 |
+
}
|
| 93 |
|
| 94 |
+
# Custom CSS for better UI
|
| 95 |
+
CUSTOM_CSS = """
|
| 96 |
+
.footer {
|
| 97 |
+
text-align: center;
|
| 98 |
+
margin-top: 20px;
|
| 99 |
+
padding: 10px;
|
| 100 |
+
background: linear-gradient(45deg, #667eea 0%, #764ba2 100%);
|
| 101 |
+
border-radius: 10px;
|
| 102 |
+
color: white;
|
| 103 |
+
}
|
|
|
|
| 104 |
|
| 105 |
+
.generate-btn {
|
| 106 |
+
background: linear-gradient(45deg, #f093fb 0%, #f5576c 100%) !important;
|
| 107 |
+
border: none !important;
|
| 108 |
+
font-weight: bold !important;
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
.main-container {
|
| 112 |
+
max-width: 1200px;
|
| 113 |
+
margin: 0 auto;
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
.system-monitor {
|
| 117 |
+
font-family: 'Courier New', monospace;
|
| 118 |
+
background: #f8f9fa;
|
| 119 |
+
padding: 10px;
|
| 120 |
+
border-radius: 5px;
|
| 121 |
+
margin: 10px 0;
|
| 122 |
+
}
|
| 123 |
+
|
| 124 |
+
.error-message {
|
| 125 |
+
background: #fee;
|
| 126 |
+
border: 1px solid #fcc;
|
| 127 |
+
padding: 10px;
|
| 128 |
+
border-radius: 5px;
|
| 129 |
+
color: #c00;
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
.success-message {
|
| 133 |
+
background: #efe;
|
| 134 |
+
border: 1px solid #cfc;
|
| 135 |
+
padding: 10px;
|
| 136 |
+
border-radius: 5px;
|
| 137 |
+
color: #080;
|
| 138 |
+
}
|
| 139 |
+
"""
|
| 140 |
|
| 141 |
@dataclass
|
| 142 |
class GenerationResult:
|
| 143 |
+
"""Result of image generation with metadata"""
|
| 144 |
success: bool
|
| 145 |
image: Optional[Image.Image] = None
|
| 146 |
+
error: Optional[str] = None
|
| 147 |
+
error_code: Optional[int] = None
|
| 148 |
+
generation_time: Optional[float] = None
|
| 149 |
+
cache_hit: bool = False
|
| 150 |
+
optimization_used: List[str] = None
|
| 151 |
+
|
| 152 |
+
class CacheManager:
|
| 153 |
+
"""Intelligent cache with LRU eviction and TTL"""
|
| 154 |
+
|
| 155 |
+
def __init__(self, max_size: int = 50, ttl_minutes: int = 30):
|
| 156 |
+
self.max_size = max_size
|
| 157 |
+
self.ttl = timedelta(minutes=ttl_minutes)
|
| 158 |
+
self.cache: Dict[str, Tuple[Image.Image, datetime]] = {}
|
| 159 |
+
self.access_times: Dict[str, datetime] = {}
|
| 160 |
+
self.lock = threading.Lock()
|
| 161 |
+
|
| 162 |
+
def _generate_key(self, prompt: str, negative_prompt: str, style: str,
|
| 163 |
+
aspect_ratio: str, guidance_scale: float,
|
| 164 |
+
inference_steps: int, seed: int) -> str:
|
| 165 |
+
"""Generate cache key from parameters"""
|
| 166 |
+
key_data = f"{prompt}|{negative_prompt}|{style}|{aspect_ratio}|{guidance_scale}|{inference_steps}|{seed}"
|
| 167 |
+
return hashlib.md5(key_data.encode()).hexdigest()
|
| 168 |
+
|
| 169 |
+
def get(self, prompt: str, negative_prompt: str, style: str,
|
| 170 |
+
aspect_ratio: str, guidance_scale: float,
|
| 171 |
+
inference_steps: int, seed: int) -> Optional[Image.Image]:
|
| 172 |
+
"""Get cached image if available and not expired"""
|
| 173 |
+
key = self._generate_key(prompt, negative_prompt, style, aspect_ratio,
|
| 174 |
+
guidance_scale, inference_steps, seed)
|
| 175 |
+
|
| 176 |
+
with self.lock:
|
| 177 |
+
if key in self.cache:
|
| 178 |
+
image, timestamp = self.cache[key]
|
| 179 |
+
if datetime.now() - timestamp < self.ttl:
|
| 180 |
+
self.access_times[key] = datetime.now()
|
| 181 |
+
logger.info(f"Cache hit for key: {key[:8]}...")
|
| 182 |
+
return image.copy()
|
| 183 |
+
else:
|
| 184 |
+
# Expired entry
|
| 185 |
+
del self.cache[key]
|
| 186 |
+
if key in self.access_times:
|
| 187 |
+
del self.access_times[key]
|
| 188 |
+
return None
|
| 189 |
|
| 190 |
+
def put(self, prompt: str, negative_prompt: str, style: str,
|
| 191 |
+
aspect_ratio: str, guidance_scale: float,
|
| 192 |
+
inference_steps: int, seed: int, image: Image.Image):
|
| 193 |
+
"""Cache image with LRU eviction"""
|
| 194 |
+
key = self._generate_key(prompt, negative_prompt, style, aspect_ratio,
|
| 195 |
+
guidance_scale, inference_steps, seed)
|
| 196 |
+
|
| 197 |
+
with self.lock:
|
| 198 |
+
# Evict if necessary
|
| 199 |
+
if len(self.cache) >= self.max_size and key not in self.cache:
|
| 200 |
+
# Find least recently used
|
| 201 |
+
lru_key = min(self.access_times.keys(),
|
| 202 |
+
key=lambda k: self.access_times[k])
|
| 203 |
+
del self.cache[lru_key]
|
| 204 |
+
del self.access_times[lru_key]
|
| 205 |
+
logger.info(f"Evicted LRU entry: {lru_key[:8]}...")
|
| 206 |
+
|
| 207 |
+
self.cache[key] = (image.copy(), datetime.now())
|
| 208 |
+
self.access_times[key] = datetime.now()
|
| 209 |
+
logger.info(f"Cached new image: {key[:8]}...")
|
| 210 |
+
|
| 211 |
+
def clear(self):
|
| 212 |
+
"""Clear all cache entries"""
|
| 213 |
+
with self.lock:
|
| 214 |
+
self.cache.clear()
|
| 215 |
+
self.access_times.clear()
|
| 216 |
+
logger.info("Cache cleared")
|
| 217 |
+
|
| 218 |
+
def get_stats(self) -> Dict[str, Any]:
|
| 219 |
+
"""Get cache statistics"""
|
| 220 |
+
with self.lock:
|
| 221 |
+
return {
|
| 222 |
+
"size": len(self.cache),
|
| 223 |
+
"max_size": self.max_size,
|
| 224 |
+
"usage_percent": (len(self.cache) / self.max_size) * 100
|
| 225 |
+
}
|
| 226 |
|
| 227 |
class SystemMonitor:
|
| 228 |
+
"""Monitor system resources and performance metrics"""
|
| 229 |
|
| 230 |
def __init__(self):
|
| 231 |
+
self.start_time = datetime.now()
|
| 232 |
self.generation_count = 0
|
| 233 |
+
self.success_count = 0
|
| 234 |
self.error_count = 0
|
| 235 |
+
self.total_generation_time = 0
|
| 236 |
+
self.lock = threading.Lock()
|
| 237 |
+
|
| 238 |
+
def log_generation(self, success: bool, generation_time: float):
|
| 239 |
+
"""Log generation metrics"""
|
| 240 |
+
with self.lock:
|
| 241 |
+
self.generation_count += 1
|
| 242 |
+
self.total_generation_time += generation_time
|
| 243 |
+
if success:
|
| 244 |
+
self.success_count += 1
|
| 245 |
+
else:
|
| 246 |
+
self.error_count += 1
|
| 247 |
|
| 248 |
+
def get_stats(self) -> Dict[str, Any]:
|
| 249 |
+
"""Get comprehensive system stats"""
|
| 250 |
+
with self.lock:
|
| 251 |
+
uptime = datetime.now() - self.start_time
|
| 252 |
+
avg_gen_time = (self.total_generation_time / self.generation_count
|
| 253 |
+
if self.generation_count > 0 else 0)
|
| 254 |
|
| 255 |
+
stats = {
|
| 256 |
+
# System resources
|
|
|
|
|
|
|
|
|
|
| 257 |
"cpu_percent": psutil.cpu_percent(interval=0.1),
|
| 258 |
+
"memory_percent": psutil.virtual_memory().percent,
|
| 259 |
+
"disk_percent": psutil.disk_usage('/').percent,
|
| 260 |
+
|
| 261 |
+
# GPU info if available
|
| 262 |
+
"gpu_available": torch.cuda.is_available(),
|
| 263 |
+
"gpu_memory": None,
|
| 264 |
+
|
| 265 |
+
# Performance metrics
|
| 266 |
+
"uptime_seconds": uptime.total_seconds(),
|
| 267 |
+
"uptime_str": str(uptime).split('.')[0],
|
| 268 |
+
"generation_count": self.generation_count,
|
| 269 |
+
"success_count": self.success_count,
|
| 270 |
"error_count": self.error_count,
|
| 271 |
+
"success_rate": (self.success_count / self.generation_count * 100
|
| 272 |
+
if self.generation_count > 0 else 0),
|
| 273 |
+
"avg_generation_time": round(avg_gen_time, 2),
|
| 274 |
+
"generations_per_minute": (self.generation_count / uptime.total_seconds() * 60
|
| 275 |
+
if uptime.total_seconds() > 0 else 0)
|
| 276 |
}
|
|
|
|
|
|
|
|
|
|
| 277 |
|
| 278 |
+
# Add GPU stats if available
|
|
|
|
|
|
|
| 279 |
if torch.cuda.is_available():
|
| 280 |
+
stats["gpu_memory"] = {
|
| 281 |
+
"allocated": torch.cuda.memory_allocated() / 1024**3,
|
| 282 |
+
"cached": torch.cuda.memory_reserved() / 1024**3,
|
| 283 |
+
"total": torch.cuda.get_device_properties(0).total_memory / 1024**3
|
| 284 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
+
return stats
|
| 287 |
|
| 288 |
class ModelManager:
|
| 289 |
+
"""Handle model loading and optimization"""
|
| 290 |
|
| 291 |
def __init__(self):
|
| 292 |
+
self.pipeline = None
|
| 293 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 294 |
+
self.dtype = self._get_optimal_dtype()
|
|
|
|
| 295 |
self.optimizations_applied = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
|
| 297 |
def _get_optimal_dtype(self) -> torch.dtype:
|
| 298 |
+
"""Determine optimal data type for the hardware"""
|
| 299 |
+
if torch.cuda.is_available():
|
| 300 |
+
# Check GPU capabilities
|
| 301 |
+
gpu_props = torch.cuda.get_device_properties(0)
|
| 302 |
+
if gpu_props.major >= 8: # Ampere and newer
|
| 303 |
return torch.bfloat16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
else:
|
| 305 |
+
return torch.float16
|
| 306 |
+
return torch.float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
|
| 308 |
+
def _try_enable_torch_compile(self) -> bool:
|
| 309 |
+
"""Try to enable torch.compile for better performance"""
|
| 310 |
+
try:
|
| 311 |
+
if hasattr(torch, 'compile') and torch.__version__ >= "2.0":
|
| 312 |
+
logger.info("PyTorch 2.0+ detected, enabling compilation")
|
| 313 |
+
return True
|
| 314 |
+
else:
|
| 315 |
+
logger.info("PyTorch < 2.0 detected, compilation not available")
|
| 316 |
+
return False
|
| 317 |
+
except Exception as e:
|
| 318 |
+
logger.warning(f"Could not enable torch.compile: {e}")
|
| 319 |
+
return False
|
| 320 |
|
| 321 |
def _try_enable_xformers(self) -> bool:
|
| 322 |
+
"""Try to enable xformers for memory efficiency"""
|
| 323 |
try:
|
| 324 |
+
import xformers
|
| 325 |
import xformers.ops
|
| 326 |
+
logger.info("xformers is available and will be used")
|
|
|
|
|
|
|
| 327 |
return True
|
| 328 |
except ImportError:
|
| 329 |
+
logger.info("xformers not available, using standard attention")
|
| 330 |
return False
|
| 331 |
except Exception as e:
|
| 332 |
+
logger.warning(f"Could not enable xformers: {e}")
|
| 333 |
return False
|
| 334 |
|
| 335 |
+
def load_model(self):
|
| 336 |
+
"""Load and optimize the model"""
|
| 337 |
+
if self.pipeline is not None:
|
| 338 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 339 |
|
|
|
|
|
|
|
| 340 |
try:
|
| 341 |
+
logger.info(f"Loading model {MODEL_ID} on {self.device} with dtype {self.dtype}")
|
| 342 |
+
|
| 343 |
+
# Load pipeline
|
| 344 |
+
self.pipeline = DiffusionPipeline.from_pretrained(
|
| 345 |
+
MODEL_ID,
|
| 346 |
+
torch_dtype=self.dtype,
|
| 347 |
+
use_safetensors=True,
|
| 348 |
+
variant=None # Remove variant to avoid fp16 issues
|
| 349 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
+
# Move to device
|
| 352 |
+
self.pipeline = self.pipeline.to(self.device)
|
| 353 |
+
|
| 354 |
+
# Enable optimizations
|
| 355 |
+
if self.device == "cuda":
|
| 356 |
+
# Try xformers
|
| 357 |
+
if self._try_enable_xformers():
|
| 358 |
+
self.pipeline.enable_xformers_memory_efficient_attention()
|
| 359 |
+
self.optimizations_applied.append("xformers")
|
| 360 |
+
|
| 361 |
+
# Try CPU offloading for memory efficiency
|
| 362 |
+
if torch.cuda.get_device_properties(0).total_memory < 8 * 1024**3: # < 8GB
|
| 363 |
+
logger.info("Low GPU memory detected, enabling CPU offloading")
|
| 364 |
+
self.pipeline.enable_sequential_cpu_offload()
|
| 365 |
+
self.optimizations_applied.append("cpu_offload")
|
| 366 |
+
else:
|
| 367 |
+
self.optimizations_applied.append("gpu_only")
|
| 368 |
+
|
| 369 |
+
# Try torch.compile
|
| 370 |
+
if self._try_enable_torch_compile():
|
| 371 |
+
# Compile the UNet for better performance
|
| 372 |
+
try:
|
| 373 |
+
self.pipeline.unet = torch.compile(self.pipeline.unet, mode="reduce-overhead")
|
| 374 |
+
self.optimizations_applied.append("torch_compile")
|
| 375 |
+
except Exception as e:
|
| 376 |
+
logger.warning(f"Could not compile UNet: {e}")
|
| 377 |
else:
|
| 378 |
+
self.optimizations_applied.append("cpu_only")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
+
# Enable VAE slicing for memory efficiency
|
| 381 |
+
self.pipeline.enable_vae_slicing()
|
| 382 |
+
self.optimizations_applied.append("vae_slicing")
|
| 383 |
|
| 384 |
+
logger.info(f"Model loaded successfully with optimizations: {', '.join(self.optimizations_applied)}")
|
| 385 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
+
except Exception as e:
|
| 388 |
+
logger.error(f"Failed to load model: {e}")
|
| 389 |
+
self.pipeline = None
|
| 390 |
+
return False
|
| 391 |
|
| 392 |
class ImageProcessor:
|
| 393 |
+
"""Process image generation and transformation"""
|
| 394 |
|
| 395 |
+
def __init__(self, model_manager: ModelManager, cache_manager: CacheManager,
|
| 396 |
+
system_monitor: SystemMonitor):
|
| 397 |
self.model_manager = model_manager
|
| 398 |
self.cache_manager = cache_manager
|
| 399 |
+
self.system_monitor = system_monitor
|
| 400 |
+
|
| 401 |
+
def generate_image(self, prompt: str, negative_prompt: str = "", style: str = "None",
|
| 402 |
+
aspect_ratio: str = "1:1", guidance_scale: float = 7.5,
|
| 403 |
+
inference_steps: int = 4, seed: int = -1,
|
| 404 |
+
use_cache: bool = True) -> GenerationResult:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 405 |
"""Generate image with comprehensive error handling"""
|
|
|
|
| 406 |
start_time = time.time()
|
| 407 |
|
| 408 |
+
# Check cache first
|
| 409 |
+
if use_cache:
|
| 410 |
+
cached_image = self.cache_manager.get(
|
| 411 |
+
prompt, negative_prompt, style, aspect_ratio,
|
| 412 |
+
guidance_scale, inference_steps, seed
|
| 413 |
+
)
|
| 414 |
+
if cached_image:
|
| 415 |
+
result = GenerationResult(
|
| 416 |
+
success=True,
|
| 417 |
+
image=cached_image,
|
| 418 |
+
generation_time=time.time() - start_time,
|
| 419 |
+
cache_hit=True
|
| 420 |
+
)
|
| 421 |
+
self.system_monitor.log_generation(True, result.generation_time)
|
| 422 |
return result
|
| 423 |
|
| 424 |
+
# Validate model
|
| 425 |
+
if not self.model_manager.load_model():
|
| 426 |
+
return GenerationResult(
|
| 427 |
+
success=False,
|
| 428 |
+
error="Model not loaded",
|
| 429 |
+
error_code=1001,
|
| 430 |
+
generation_time=time.time() - start_time
|
| 431 |
+
)
|
| 432 |
|
| 433 |
+
try:
|
| 434 |
+
# Set seed
|
| 435 |
+
if seed != -1:
|
| 436 |
+
torch.manual_seed(seed)
|
| 437 |
+
if torch.cuda.is_available():
|
| 438 |
+
torch.cuda.manual_seed_all(seed)
|
| 439 |
+
|
| 440 |
+
# Get dimensions
|
| 441 |
+
width, height = ASPECT_RATIOS.get(aspect_ratio, ASPECT_RATIOS[DEFAULT_ASPECT_RATIO])
|
| 442 |
+
|
| 443 |
+
# Apply style to prompt
|
| 444 |
+
if style != "None":
|
| 445 |
+
style_prompt = f"{prompt}, {style.lower()} style"
|
| 446 |
+
else:
|
| 447 |
+
style_prompt = prompt
|
| 448 |
|
| 449 |
+
# Generate
|
| 450 |
+
logger.info(f"Generating image: {style_prompt[:50]}...")
|
| 451 |
+
|
| 452 |
+
# Adjust parameters for quality/speed balance
|
| 453 |
+
if inference_steps < 4:
|
| 454 |
+
inference_steps = 4 # Minimum for quality
|
| 455 |
+
elif inference_steps > 50:
|
| 456 |
+
inference_steps = 50 # Maximum for efficiency
|
| 457 |
+
|
| 458 |
+
with torch.cuda.amp.autocast() if self.model_manager.device == "cuda" else torch.no_grad():
|
| 459 |
+
result_image = self.model_manager.pipeline(
|
| 460 |
+
prompt=style_prompt,
|
| 461 |
+
negative_prompt=negative_prompt,
|
| 462 |
+
num_inference_steps=inference_steps,
|
| 463 |
+
guidance_scale=guidance_scale,
|
| 464 |
+
width=width,
|
| 465 |
+
height=height,
|
| 466 |
+
num_images_per_prompt=1,
|
| 467 |
+
generator=torch.Generator(device=self.model_manager.device).manual_seed(seed) if seed != -1 else None
|
| 468 |
+
).images[0]
|
| 469 |
|
| 470 |
+
# Cache the result
|
| 471 |
+
if use_cache:
|
| 472 |
+
self.cache_manager.put(
|
| 473 |
+
prompt, negative_prompt, style, aspect_ratio,
|
| 474 |
+
guidance_scale, inference_steps, seed, result_image
|
| 475 |
+
)
|
| 476 |
|
| 477 |
+
generation_time = time.time() - start_time
|
| 478 |
+
result = GenerationResult(
|
| 479 |
+
success=True,
|
| 480 |
+
image=result_image,
|
| 481 |
+
generation_time=generation_time,
|
| 482 |
+
cache_hit=False,
|
| 483 |
+
optimization_used=self.model_manager.optimizations_applied.copy()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 484 |
)
|
| 485 |
|
| 486 |
+
self.system_monitor.log_generation(True, generation_time)
|
| 487 |
+
logger.info(f"Image generated successfully in {generation_time:.2f}s")
|
| 488 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
|
| 490 |
except torch.cuda.OutOfMemoryError:
|
| 491 |
+
logger.error("CUDA out of memory")
|
| 492 |
+
# Clear cache and try to free memory
|
| 493 |
+
self.cache_manager.clear()
|
| 494 |
+
gc.collect()
|
| 495 |
+
if torch.cuda.is_available():
|
| 496 |
+
torch.cuda.empty_cache()
|
| 497 |
+
|
| 498 |
+
self.system_monitor.log_generation(False, time.time() - start_time)
|
| 499 |
+
return GenerationResult(
|
| 500 |
+
success=False,
|
| 501 |
+
error="GPU out of memory. Try smaller image size or restart space.",
|
| 502 |
+
error_code=3001,
|
| 503 |
+
generation_time=time.time() - start_time
|
| 504 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
|
| 506 |
+
except Exception as e:
|
| 507 |
+
logger.error(f"Generation failed: {e}")
|
| 508 |
+
self.system_monitor.log_generation(False, time.time() - start_time)
|
| 509 |
+
return GenerationResult(
|
| 510 |
+
success=False,
|
| 511 |
+
error=str(e),
|
| 512 |
+
error_code=1002,
|
| 513 |
+
generation_time=time.time() - start_time
|
| 514 |
+
)
|
| 515 |
|
| 516 |
+
def transform_image(self, source_image: Image.Image, prompt: str,
|
| 517 |
+
negative_prompt: str = "", strength: float = 0.7,
|
| 518 |
+
guidance_scale: float = 7.5, inference_steps: int = 4,
|
| 519 |
+
seed: int = -1) -> GenerationResult:
|
| 520 |
+
"""Transform existing image"""
|
| 521 |
+
start_time = time.time()
|
| 522 |
|
| 523 |
+
# Validate model
|
| 524 |
+
if not self.model_manager.load_model():
|
| 525 |
+
return GenerationResult(
|
| 526 |
+
success=False,
|
| 527 |
+
error="Model not loaded",
|
| 528 |
+
error_code=1001,
|
| 529 |
+
generation_time=time.time() - start_time
|
| 530 |
+
)
|
| 531 |
|
| 532 |
+
try:
|
| 533 |
+
# Set seed
|
| 534 |
+
if seed != -1:
|
| 535 |
+
torch.manual_seed(seed)
|
| 536 |
+
if torch.cuda.is_available():
|
| 537 |
+
torch.cuda.manual_seed_all(seed)
|
| 538 |
|
| 539 |
+
# Prepare image
|
| 540 |
+
source_image = source_image.convert("RGB")
|
| 541 |
|
| 542 |
# Transform
|
| 543 |
+
logger.info(f"Transforming image with prompt: {prompt[:50]}...")
|
| 544 |
+
|
| 545 |
+
with torch.cuda.amp.autocast() if self.model_manager.device == "cuda" else torch.no_grad():
|
| 546 |
+
result_image = self.model_manager.pipeline(
|
| 547 |
+
image=source_image,
|
| 548 |
+
prompt=prompt,
|
| 549 |
+
negative_prompt=negative_prompt,
|
| 550 |
+
strength=strength,
|
| 551 |
+
num_inference_steps=inference_steps,
|
| 552 |
+
guidance_scale=guidance_scale,
|
| 553 |
+
generator=torch.Generator(device=self.model_manager.device).manual_seed(seed) if seed != -1 else None
|
| 554 |
+
).images[0]
|
| 555 |
+
|
| 556 |
+
generation_time = time.time() - start_time
|
| 557 |
+
result = GenerationResult(
|
| 558 |
+
success=True,
|
| 559 |
+
image=result_image,
|
| 560 |
+
generation_time=generation_time,
|
| 561 |
+
optimization_used=self.model_manager.optimizations_applied.copy()
|
| 562 |
)
|
| 563 |
|
| 564 |
+
self.system_monitor.log_generation(True, generation_time)
|
| 565 |
+
logger.info(f"Image transformed successfully in {generation_time:.2f}s")
|
| 566 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 567 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 568 |
except Exception as e:
|
| 569 |
+
logger.error(f"Transform failed: {e}")
|
| 570 |
+
self.system_monitor.log_generation(False, time.time() - start_time)
|
| 571 |
+
return GenerationResult(
|
| 572 |
+
success=False,
|
| 573 |
+
error=str(e),
|
| 574 |
+
error_code=1003,
|
| 575 |
+
generation_time=time.time() - start_time
|
| 576 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 577 |
|
| 578 |
+
# Create global instances
|
|
|
|
| 579 |
model_manager = ModelManager()
|
| 580 |
+
cache_manager = CacheManager()
|
| 581 |
+
system_monitor = SystemMonitor()
|
| 582 |
+
image_processor = ImageProcessor(model_manager, cache_manager, system_monitor)
|
| 583 |
+
|
| 584 |
+
# Preload model if possible
|
| 585 |
+
model_manager.load_model()
|
| 586 |
+
|
| 587 |
+
def format_system_stats(stats: Dict[str, Any]) -> str:
|
| 588 |
+
"""Format system stats for display"""
|
| 589 |
+
html = "<div class='system-monitor'>"
|
| 590 |
+
html += "<h4>🖥️ System Resources</h4>"
|
| 591 |
+
html += f"<strong>CPU:</strong> {stats['cpu_percent']:.1f}%<br>"
|
| 592 |
+
html += f"<strong>Memory:</strong> {stats['memory_percent']:.1f}%<br>"
|
| 593 |
+
html += f"<strong>Disk:</strong> {stats['disk_percent']:.1f}%<br>"
|
| 594 |
+
|
| 595 |
+
if stats['gpu_available']:
|
| 596 |
+
gpu_mem = stats.get('gpu_memory', {})
|
| 597 |
+
if gpu_mem:
|
| 598 |
+
html += f"<strong>GPU Memory:</strong> {gpu_mem.get('allocated', 0):.1f}GB / {gpu_mem.get('total', 0):.1f}GB<br>"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 599 |
else:
|
| 600 |
+
html += "<strong>GPU:</strong> Available<br>"
|
| 601 |
+
else:
|
| 602 |
+
html += "<strong>GPU:</strong> Not Available<br>"
|
| 603 |
+
|
| 604 |
+
html += "<h4>📊 Performance Metrics</h4>"
|
| 605 |
+
html += f"<strong>Uptime:</strong> {stats['uptime_str']}<br>"
|
| 606 |
+
html += f"<strong>Generations:</strong> {stats['generation_count']}<br>"
|
| 607 |
+
html += f"<strong>Success Rate:</strong> {stats['success_rate']:.1f}%<br>"
|
| 608 |
+
html += f"<strong>Avg Time:</strong> {stats['avg_generation_time']}s<br>"
|
| 609 |
+
html += f"<strong>Gen/Min:</strong> {stats['generations_per_minute']:.1f}<br>"
|
| 610 |
+
|
| 611 |
+
cache_stats = cache_manager.get_stats()
|
| 612 |
+
html += "<h4>💾 Cache</h4>"
|
| 613 |
+
html += f"<strong>Size:</strong> {cache_stats['size']}/{cache_stats['max_size']}<br>"
|
| 614 |
+
html += f"<strong>Usage:</strong> {cache_stats['usage_percent']:.1f}%<br>"
|
| 615 |
+
|
| 616 |
+
if model_manager.optimizations_applied:
|
| 617 |
+
html += "<h4>⚡ Active Optimizations</h4>"
|
| 618 |
+
html += f"{' • '.join(model_manager.optimizations_applied)}<br>"
|
| 619 |
+
|
| 620 |
+
html += "</div>"
|
| 621 |
+
return html
|
| 622 |
+
|
| 623 |
+
def generate_image_wrapper(prompt: str, negative_prompt: str, style: str,
|
| 624 |
+
aspect_ratio: str, guidance_scale: float,
|
| 625 |
+
inference_steps: int, seed: int, progress=gr.Progress()) -> Tuple[Optional[Image.Image], str]:
|
| 626 |
+
"""Wrapper for image generation with progress tracking"""
|
| 627 |
+
progress(0.1, desc="Preparing generation...")
|
| 628 |
+
|
| 629 |
+
result = image_processor.generate_image(
|
| 630 |
+
prompt=prompt,
|
| 631 |
+
negative_prompt=negative_prompt,
|
| 632 |
+
style=style,
|
| 633 |
+
aspect_ratio=aspect_ratio,
|
| 634 |
+
guidance_scale=guidance_scale,
|
| 635 |
+
inference_steps=int(inference_steps),
|
| 636 |
+
seed=int(seed)
|
| 637 |
+
)
|
| 638 |
|
| 639 |
+
progress(0.9, desc="Finalizing...")
|
| 640 |
+
|
| 641 |
+
if result.success:
|
| 642 |
+
message = f"✅ Generated in {result.generation_time:.2f}s"
|
| 643 |
+
if result.cache_hit:
|
| 644 |
+
message += " (from cache)"
|
| 645 |
+
return result.image, message
|
| 646 |
+
else:
|
| 647 |
+
error_msg = f"❌ Error {result.error_code}: {result.error}"
|
| 648 |
+
return None, error_msg
|
| 649 |
+
|
| 650 |
+
def transform_image_wrapper(source_image: Image.Image, prompt: str,
|
| 651 |
+
negative_prompt: str, strength: float,
|
| 652 |
+
guidance_scale: float, inference_steps: int,
|
| 653 |
+
seed: int, progress=gr.Progress()) -> Tuple[Optional[Image.Image], str]:
|
| 654 |
+
"""Wrapper for image transformation with progress tracking"""
|
| 655 |
+
if source_image is None:
|
| 656 |
+
return None, "❌ Please upload an image"
|
| 657 |
+
|
| 658 |
+
progress(0.1, desc="Preparing transformation...")
|
| 659 |
+
|
| 660 |
+
result = image_processor.transform_image(
|
| 661 |
+
source_image=source_image,
|
| 662 |
+
prompt=prompt,
|
| 663 |
+
negative_prompt=negative_prompt,
|
| 664 |
+
strength=strength,
|
| 665 |
+
guidance_scale=guidance_scale,
|
| 666 |
+
inference_steps=int(inference_steps),
|
| 667 |
+
seed=int(seed)
|
| 668 |
+
)
|
| 669 |
|
| 670 |
+
progress(0.9, desc="Finalizing...")
|
| 671 |
|
| 672 |
+
if result.success:
|
| 673 |
+
return result.image, f"✅ Transformed in {result.generation_time:.2f}s"
|
| 674 |
+
else:
|
| 675 |
+
return None, f"❌ Error {result.error_code}: {result.error}"
|
| 676 |
|
| 677 |
+
# Build Gradio interface
|
| 678 |
+
def build_interface():
|
| 679 |
+
"""Build the Gradio interface"""
|
| 680 |
with gr.Blocks(
|
| 681 |
+
title="Z Image Turbo",
|
| 682 |
+
css=CUSTOM_CSS,
|
| 683 |
+
theme=gr.themes.Soft()
|
| 684 |
) as demo:
|
| 685 |
+
gr.Markdown("# 🎨 Z Image Turbo")
|
| 686 |
+
gr.Markdown("High-performance image generation and transformation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 687 |
|
| 688 |
with gr.Tabs():
|
| 689 |
# Generation Tab
|
| 690 |
+
with gr.TabItem("✨ Generate"):
|
| 691 |
with gr.Row():
|
| 692 |
+
with gr.Column(scale=2):
|
| 693 |
+
prompt_input = gr.Textbox(
|
| 694 |
label="Prompt",
|
| 695 |
placeholder="Describe the image you want to generate...",
|
| 696 |
+
lines=3
|
|
|
|
| 697 |
)
|
| 698 |
+
negative_prompt_input = gr.Textbox(
|
| 699 |
+
label="Negative Prompt",
|
| 700 |
+
placeholder="What you don't want in the image...",
|
| 701 |
+
lines=2,
|
| 702 |
+
value=""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 703 |
)
|
| 704 |
|
| 705 |
with gr.Row():
|
| 706 |
+
style_dropdown = gr.Dropdown(
|
| 707 |
+
label="Style",
|
| 708 |
+
choices=STYLE_PRESETS,
|
| 709 |
+
value="None"
|
|
|
|
|
|
|
|
|
|
| 710 |
)
|
| 711 |
+
aspect_ratio_dropdown = gr.Dropdown(
|
| 712 |
+
label="Aspect Ratio",
|
| 713 |
+
choices=list(ASPECT_RATIOS.keys()),
|
| 714 |
+
value=DEFAULT_ASPECT_RATIO
|
|
|
|
|
|
|
|
|
|
|
|
|
| 715 |
)
|
| 716 |
|
| 717 |
with gr.Row():
|
| 718 |
+
guidance_scale = gr.Slider(
|
| 719 |
+
label="Guidance Scale",
|
| 720 |
+
minimum=1.0,
|
| 721 |
+
maximum=20.0,
|
| 722 |
+
value=7.5,
|
| 723 |
+
step=0.5
|
| 724 |
)
|
| 725 |
+
inference_steps = gr.Slider(
|
| 726 |
+
label="Inference Steps",
|
| 727 |
+
minimum=1,
|
| 728 |
+
maximum=50,
|
| 729 |
+
value=4,
|
| 730 |
+
step=1
|
| 731 |
)
|
| 732 |
|
| 733 |
+
seed_input = gr.Number(
|
| 734 |
+
label="Seed (-1 for random)",
|
| 735 |
+
value=-1,
|
| 736 |
+
precision=0
|
| 737 |
+
)
|
| 738 |
+
|
| 739 |
+
generate_btn = gr.Button(
|
| 740 |
"🚀 Generate",
|
| 741 |
variant="primary",
|
| 742 |
+
elem_classes=["generate-btn"]
|
|
|
|
| 743 |
)
|
| 744 |
|
| 745 |
+
with gr.Column(scale=1):
|
| 746 |
+
output_image = gr.Image(
|
| 747 |
label="Generated Image",
|
| 748 |
+
type="pil"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 749 |
)
|
| 750 |
+
output_info = gr.Textbox(
|
| 751 |
+
label="Information",
|
| 752 |
+
interactive=False
|
|
|
|
|
|
|
|
|
|
| 753 |
)
|
| 754 |
|
| 755 |
+
generate_btn.click(
|
| 756 |
+
fn=generate_image_wrapper,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 757 |
inputs=[
|
| 758 |
+
prompt_input,
|
| 759 |
+
negative_prompt_input,
|
| 760 |
+
style_dropdown,
|
| 761 |
+
aspect_ratio_dropdown,
|
| 762 |
+
guidance_scale,
|
| 763 |
+
inference_steps,
|
| 764 |
+
seed_input
|
| 765 |
],
|
| 766 |
+
outputs=[output_image, output_info]
|
| 767 |
)
|
| 768 |
|
| 769 |
# Transform Tab
|
| 770 |
+
with gr.TabItem("🔄 Transform"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 771 |
with gr.Row():
|
| 772 |
+
with gr.Column(scale=2):
|
| 773 |
+
source_image_input = gr.Image(
|
| 774 |
+
label="Source Image",
|
| 775 |
+
type="pil"
|
|
|
|
| 776 |
)
|
| 777 |
+
transform_prompt = gr.Textbox(
|
|
|
|
| 778 |
label="Transform Prompt",
|
| 779 |
placeholder="Describe how to transform the image...",
|
| 780 |
+
lines=3
|
| 781 |
)
|
| 782 |
+
transform_negative_prompt = gr.Textbox(
|
| 783 |
+
label="Negative Prompt",
|
| 784 |
+
placeholder="What to avoid in the transformation...",
|
| 785 |
+
lines=2,
|
| 786 |
+
value=""
|
| 787 |
)
|
| 788 |
|
| 789 |
with gr.Row():
|
| 790 |
+
transform_strength = gr.Slider(
|
| 791 |
+
label="Transform Strength",
|
| 792 |
minimum=0.0,
|
| 793 |
maximum=1.0,
|
| 794 |
+
value=0.7,
|
| 795 |
+
step=0.1
|
|
|
|
|
|
|
| 796 |
)
|
| 797 |
+
transform_guidance = gr.Slider(
|
| 798 |
+
label="Guidance Scale",
|
| 799 |
+
minimum=1.0,
|
| 800 |
+
maximum=20.0,
|
| 801 |
+
value=7.5,
|
| 802 |
+
step=0.5
|
|
|
|
| 803 |
)
|
| 804 |
|
| 805 |
+
transform_steps = gr.Slider(
|
| 806 |
+
label="Inference Steps",
|
| 807 |
+
minimum=1,
|
| 808 |
+
maximum=50,
|
| 809 |
+
value=4,
|
| 810 |
+
step=1
|
| 811 |
+
)
|
|
|
|
|
|
|
|
|
|
| 812 |
|
| 813 |
+
transform_seed = gr.Number(
|
| 814 |
+
label="Seed (-1 for random)",
|
| 815 |
+
value=-1,
|
| 816 |
+
precision=0
|
| 817 |
)
|
| 818 |
|
| 819 |
+
transform_btn = gr.Button(
|
| 820 |
+
"🔄 Transform",
|
| 821 |
+
variant="primary"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 822 |
)
|
| 823 |
|
| 824 |
+
with gr.Column(scale=1):
|
| 825 |
+
transformed_image = gr.Image(
|
| 826 |
+
label="Transformed Image",
|
| 827 |
+
type="pil"
|
| 828 |
+
)
|
| 829 |
+
transform_info = gr.Textbox(
|
| 830 |
+
label="Information",
|
| 831 |
+
interactive=False
|
| 832 |
)
|
| 833 |
|
| 834 |
+
transform_btn.click(
|
| 835 |
+
fn=transform_image_wrapper,
|
|
|
|
| 836 |
inputs=[
|
| 837 |
+
source_image_input,
|
| 838 |
+
transform_prompt,
|
| 839 |
+
transform_negative_prompt,
|
| 840 |
+
transform_strength,
|
| 841 |
+
transform_guidance,
|
| 842 |
+
transform_steps,
|
| 843 |
+
transform_seed
|
| 844 |
],
|
| 845 |
+
outputs=[transformed_image, transform_info]
|
| 846 |
)
|
| 847 |
|
| 848 |
# System Monitor Tab
|
| 849 |
+
with gr.TabItem("📊 System Monitor"):
|
| 850 |
+
system_stats = gr.HTML(
|
| 851 |
+
value=format_system_stats(system_monitor.get_stats()),
|
| 852 |
+
label="System Statistics"
|
| 853 |
+
)
|
| 854 |
+
refresh_btn = gr.Button("🔄 Refresh")
|
| 855 |
+
clear_cache_btn = gr.Button("🗑️ Clear Cache")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 856 |
|
| 857 |
refresh_btn.click(
|
| 858 |
+
fn=lambda: format_system_stats(system_monitor.get_stats()),
|
| 859 |
+
outputs=[system_stats]
|
|
|
|
|
|
|
|
|
|
| 860 |
)
|
| 861 |
|
| 862 |
+
clear_cache_btn.click(
|
| 863 |
+
fn=lambda: (cache_manager.clear(), format_system_stats(system_monitor.get_stats()))[1],
|
| 864 |
+
outputs=[system_stats]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 865 |
)
|
| 866 |
|
| 867 |
+
# Footer
|
| 868 |
+
gr.HTML("""
|
| 869 |
+
<div class="footer">
|
| 870 |
+
<p>🚀 Z Image Turbo - Production Edition v2.0.0</p>
|
| 871 |
+
<p>Created with ❤️ by AI Agent Framework Specialist</p>
|
| 872 |
+
</div>
|
| 873 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 874 |
|
| 875 |
return demo
|
| 876 |
|
| 877 |
+
# Create and launch the demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 878 |
if __name__ == "__main__":
|
| 879 |
+
logger.info("Starting Z Image Turbo application...")
|
| 880 |
|
| 881 |
+
demo = build_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 882 |
|
| 883 |
# Launch with optimizations
|
| 884 |
demo.launch(
|
| 885 |
share=False,
|
| 886 |
show_error=True,
|
|
|
|
| 887 |
max_threads=40,
|
| 888 |
+
prevent_thread_lock=False,
|
| 889 |
+
enable_queue=True
|
| 890 |
+
)
|
|
|