File size: 41,335 Bytes
14cbc25
214386e
14cbc25
 
214386e
14cbc25
 
 
 
 
 
214386e
 
 
14cbc25
 
 
 
 
 
21266a0
81f353b
14cbc25
81f353b
14cbc25
214386e
14cbc25
 
 
 
81f353b
14cbc25
81f353b
14cbc25
214386e
14cbc25
 
 
 
 
 
 
81f353b
14cbc25
81f353b
14cbc25
214386e
14cbc25
 
 
 
 
 
81f353b
14cbc25
81f353b
14cbc25
214386e
14cbc25
 
 
 
 
 
 
214386e
14cbc25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214386e
14cbc25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214386e
14cbc25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214386e
14cbc25
 
 
 
 
 
 
 
 
 
 
 
214386e
14cbc25
81f353b
14cbc25
214386e
 
14cbc25
 
214386e
 
14cbc25
214386e
14cbc25
 
 
 
 
 
 
 
 
 
214386e
14cbc25
 
 
 
 
 
 
 
 
 
 
214386e
14cbc25
 
 
 
 
 
 
 
 
 
 
214386e
4153280
 
14cbc25
 
 
 
 
 
 
 
 
 
 
 
214386e
4153280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214386e
 
 
 
 
 
4153280
 
 
 
 
 
 
214386e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4153280
214386e
 
 
 
4153280
 
 
 
 
214386e
 
 
 
 
4153280
214386e
4153280
214386e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4153280
 
 
 
 
 
214386e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14cbc25
 
 
 
214386e
14cbc25
 
 
 
 
214386e
14cbc25
 
 
 
 
214386e
14cbc25
 
214386e
14cbc25
 
 
 
 
214386e
14cbc25
 
214386e
14cbc25
214386e
14cbc25
 
 
 
 
 
 
214386e
14cbc25
 
214386e
14cbc25
 
214386e
14cbc25
 
 
 
214386e
14cbc25
214386e
14cbc25
 
 
 
 
 
 
 
214386e
14cbc25
214386e
14cbc25
214386e
14cbc25
 
214386e
14cbc25
214386e
14cbc25
 
 
 
214386e
14cbc25
214386e
14cbc25
 
214386e
14cbc25
214386e
14cbc25
 
 
 
 
 
 
214386e
14cbc25
214386e
14cbc25
214386e
14cbc25
 
214386e
14cbc25
214386e
14cbc25
 
 
214386e
14cbc25
 
 
 
 
 
 
 
214386e
14cbc25
214386e
14cbc25
214386e
14cbc25
214386e
14cbc25
 
 
 
 
 
214386e
14cbc25
214386e
14cbc25
 
214386e
14cbc25
214386e
14cbc25
 
 
 
214386e
14cbc25
 
 
 
 
 
214386e
14cbc25
 
 
 
 
214386e
14cbc25
 
 
214386e
14cbc25
 
 
 
 
 
214386e
14cbc25
 
214386e
14cbc25
214386e
14cbc25
 
 
 
 
 
214386e
14cbc25
 
 
214386e
14cbc25
 
 
 
 
214386e
14cbc25
214386e
14cbc25
 
214386e
14cbc25
 
214386e
14cbc25
214386e
14cbc25
 
214386e
14cbc25
214386e
14cbc25
 
 
81f353b
214386e
81f353b
14cbc25
214386e
81f353b
14cbc25
214386e
81f353b
14cbc25
214386e
81f353b
14cbc25
214386e
14cbc25
 
214386e
14cbc25
 
 
214386e
4153280
214386e
 
 
 
 
 
 
 
 
 
 
 
 
4153280
214386e
 
 
 
4153280
 
 
 
 
 
 
 
 
214386e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4153280
214386e
 
 
 
 
 
 
 
4153280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214386e
4153280
 
214386e
 
 
 
 
 
 
4153280
14cbc25
 
81f353b
 
214386e
 
4153280
14cbc25
214386e
 
14cbc25
214386e
 
14cbc25
4153280
14cbc25
 
 
4153280
 
14cbc25
4153280
 
 
 
 
 
 
 
 
 
 
214386e
 
 
 
 
 
 
 
 
 
 
14cbc25
 
 
 
 
 
214386e
4153280
14cbc25
 
214386e
4153280
214386e
 
4153280
 
214386e
4153280
 
 
 
 
 
 
 
214386e
 
 
14cbc25
4153280
14cbc25
 
4153280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214386e
3123760
14cbc25
 
81f353b
 
 
14cbc25
214386e
14cbc25
 
81f353b
14cbc25
 
81f353b
14cbc25
 
 
 
214386e
14cbc25
 
 
 
214386e
14cbc25
 
 
81f353b
14cbc25
 
 
 
214386e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14cbc25
81f353b
14cbc25
 
 
 
 
 
81f353b
14cbc25
 
214386e
14cbc25
81f353b
14cbc25
214386e
14cbc25
214386e
14cbc25
 
81f353b
14cbc25
 
214386e
14cbc25
81f353b
14cbc25
 
214386e
14cbc25
 
 
214386e
14cbc25
 
81f353b
14cbc25
 
214386e
14cbc25
81f353b
14cbc25
 
 
 
 
214386e
81f353b
14cbc25
81f353b
14cbc25
81f353b
214386e
14cbc25
81f353b
14cbc25
 
81f353b
14cbc25
 
214386e
14cbc25
81f353b
14cbc25
81f353b
14cbc25
81f353b
14cbc25
214386e
14cbc25
214386e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14cbc25
 
214386e
14cbc25
214386e
 
 
 
 
 
 
 
 
 
14cbc25
214386e
 
 
 
 
 
14cbc25
214386e
14cbc25
 
 
214386e
 
 
 
 
 
14cbc25
214386e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
# --------------------------------------------------------------
# IGCSE Platform โ€“ Enhanced Past Papers System with Question Search
# Models: Gemini 2.5 (Primary) โ†’ Cohere โ†’ Z.ai โ†’ MiniMax (Fallbacks)
# --------------------------------------------------------------

import os
import json
from datetime import datetime
import gradio as gr
import PyPDF2
import time
import re
from PIL import Image
import io

# ---------- 1. Configure ALL AI Systems ----------
# Gemini (Primary)
try:
    import google.generativeai as genai
    genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
    gemini_model = genai.GenerativeModel('gemini-2.5-pro')
    print("โœ… Gemini AI initialized successfully (PRIMARY)")
except Exception as e:
    print(f"โŒ Error initializing Gemini: {e}")
    gemini_model = None

# Cohere (Secondary)
try:
    import cohere
    cohere_client = cohere.Client(os.getenv("COHERE_API_KEY"))
    print("โœ… Cohere initialized successfully (SECONDARY)")
except Exception as e:
    print(f"โŒ Error initializing Cohere: {e}")
    cohere_client = None

# Z.ai (Tertiary)
try:
    from huggingface_hub import InferenceClient
    zai_client = InferenceClient(
        provider="novita",
        api_key=os.environ.get("HF_TOKEN"),
    )
    print("โœ… Z.ai GLM-4.6 initialized successfully (TERTIARY)")
except Exception as e:
    print(f"โŒ Error initializing Z.ai: {e}")
    zai_client = None

# MiniMax (Final Fallback)
try:
    minimax_client = InferenceClient(
        provider="novita",
        api_key=os.environ.get("HF_TOKEN"),
    )
    print("โœ… MiniMax AI initialized successfully (FINAL FALLBACK)")
except Exception as e:
    print(f"โŒ Error initializing MiniMax: {e}")
    minimax_client = None

# ---------- 2. Unified AI Function with Smart Fallback ----------
def ask_ai(prompt, temperature=0.7, max_retries=2):
    """
    Try models in order: Gemini โ†’ Cohere โ†’ Z.ai โ†’ MiniMax
    Returns: (response_text, source_name)
    """
    last_error = None
    
    # Try Gemini first (Primary)
    if gemini_model:
        for attempt in range(max_retries):
            try:
                response = gemini_model.generate_content(
                    prompt,
                    generation_config=genai.types.GenerationConfig(
                        temperature=temperature,
                    )
                )
                return response.text, "gemini"
            except Exception as e:
                last_error = e
                print(f"โš  Gemini attempt {attempt+1} failed: {str(e)}")
                if attempt < max_retries - 1:
                    time.sleep(1)
    
    # Try Cohere (Secondary)
    if cohere_client:
        for attempt in range(max_retries):
            try:
                response = cohere_client.chat(
                    model="command-r-plus-08-2024",
                    message=prompt,
                    temperature=temperature
                )
                return response.text, "cohere"
            except Exception as e:
                last_error = e
                print(f"โš  Cohere attempt {attempt+1} failed: {str(e)}")
                if attempt < max_retries - 1:
                    time.sleep(1)
    
    # Try Z.ai (Tertiary)
    if zai_client:
        for attempt in range(max_retries):
            try:
                completion = zai_client.chat.completions.create(
                    model="zai-org/GLM-4.6",
                    messages=[{"role": "user", "content": prompt}],
                    temperature=temperature
                )
                return completion.choices[0].message.content, "zai"
            except Exception as e:
                last_error = e
                print(f"โš  Z.ai attempt {attempt+1} failed: {str(e)}")
                if attempt < max_retries - 1:
                    time.sleep(1)
    
    # Try MiniMax (Final Fallback)
    if minimax_client:
        try:
            completion = minimax_client.chat.completions.create(
                model="MiniMaxAI/MiniMax-M2",
                messages=[{"role": "user", "content": prompt}],
                temperature=temperature
            )
            return completion.choices[0].message.content, "minimax"
        except Exception as e:
            last_error = e
            print(f"โš  MiniMax fallback failed: {str(e)}")
    
    # All failed
    error_msg = f"โŒ Error: All AI services failed. Last error: {str(last_error)}"
    return error_msg, "error"

# ---------- 3. Enhanced Global Storage ----------
papers_storage = []
pdf_content_storage = {}
insert_storage = {}  # Store insert images/documents
questions_index = []  # Index of all extracted questions
ADMIN_PASSWORD = "@mikaelJ46"

# ---------- 4. Topic lists ----------
geography_topics = [
    "Population & Settlement", "Migration", "Urbanisation", "Rural Settlements",
    "Natural Hazards: Earthquakes", "Natural Hazards: Volcanoes", "Natural Hazards: Tropical Storms",
    "Rivers & Flooding", "Coasts & Coastal Management", "Weather & Climate",
    "Climate Change", "Ecosystems: Tropical Rainforests", "Ecosystems: Hot Deserts",
    "Economic Development", "Industry & Manufacturing", "Tourism", "Energy Resources",
    "Water Resources", "Agriculture & Food Production", "Environmental Risks",
    "Map Skills & Fieldwork", "GIS & Technology", "Sustainability"
]

history_topics = [
    "WWI: Causes & Origins", "WWI: Key Events & Battles", "WWI: Treaty of Versailles",
    "WWII: Causes", "WWII: Key Events", "WWII: Holocaust", "WWII: Impact & Consequences",
    "Cold War: Origins", "Cold War: Key Events", "Cold War: Cuban Missile Crisis",
    "Russian Revolution 1917", "Rise of Stalin", "Nazi Germany: Hitler's Rise",
    "Nazi Germany: Policies", "Nazi Germany: Life in Nazi Germany",
    "USA 1919-1941: Boom & Depression", "USA: New Deal", "USA: Civil Rights Movement",
    "China: Communist Revolution", "China: Mao's China",
    "Decolonisation", "United Nations", "Arab-Israeli Conflict",
    "Vietnam War", "Historical Skills & Sources", "Causation & Consequence"
]

business_topics = [
    "Business Activity & Types", "Business Objectives", "Stakeholders",
    "Business Structure & Organisation", "Recruitment & Selection", "Training & Development",
    "Motivation Theory", "Leadership & Management Styles", "Communication",
    "Marketing: Market Research", "Marketing Mix: Product", "Marketing Mix: Price",
    "Marketing Mix: Place", "Marketing Mix: Promotion", "Marketing Strategy",
    "Production Methods", "Quality Management", "Location Decisions",
    "Finance: Sources of Finance", "Finance: Cash Flow", "Finance: Break-even Analysis",
    "Finance: Financial Statements", "Business Growth", "Economics: Supply & Demand",
    "Economics: Market Structure", "International Business", "Business Ethics & Sustainability"
]

# ---------- 5. Enhanced PDF Processing with Question Extraction & Paper Intelligence ----------

def extract_text_from_pdf(pdf_file):
    """Extract text from uploaded PDF file"""
    if pdf_file is None:
        return ""
    try:
        pdf_reader = PyPDF2.PdfReader(pdf_file)
        text = ""
        for page in pdf_reader.pages:
            text += page.extract_text() + "\n"
        return text
    except Exception as e:
        return f"Error extracting PDF: {e}"

def identify_paper_details(text, filename):
    """Use AI to identify paper year, series, variant, and subject from content"""
    # Extract first 2000 characters for analysis
    sample_text = text[:2000] if len(text) > 2000 else text
    
    prompt = f"""Analyze this IGCSE past paper and identify its details.

Filename: {filename}
Paper Text Sample:
{sample_text}

Identify and return ONLY a JSON object with:
- subject: The subject name (e.g., "Mathematics", "Physics", "Chemistry", "Biology", "Geography", "History", "Business")
- year: The year (e.g., "2023", "2022")
- series: The exam series (e.g., "June", "November", "March", "May/June")
- variant: The paper variant (e.g., "1", "2", "3" or "11", "12", "21", "22")
- paper_number: The paper number (e.g., "1", "2", "3", "4")
- syllabus_code: If visible (e.g., "0580", "0625", "0610")

Look for patterns like:
- "June 2023" or "November 2022"
- "Paper 2 Variant 1" or "Paper 21"
- Subject codes like "0580/21/M/J/23"

Return ONLY valid JSON (no markdown):
{{"subject": "...", "year": "...", "series": "...", "variant": "...", "paper_number": "...", "syllabus_code": "..."}}"""
    
    try:
        response, _ = ask_ai(prompt, temperature=0.1)
        clean_txt = response.replace("```json", "").replace("```", "").strip()
        details = json.loads(clean_txt)
        return details
    except Exception as e:
        print(f"Error identifying paper details: {e}")
        # Fallback to filename parsing
        return parse_filename_for_details(filename)

def parse_filename_for_details(filename):
    """Fallback: Parse filename for paper details"""
    import re
    
    details = {
        "subject": "Unknown",
        "year": "Unknown",
        "series": "Unknown",
        "variant": "Unknown",
        "paper_number": "Unknown",
        "syllabus_code": "Unknown"
    }
    
    # Common patterns in IGCSE filenames
    # e.g., "0580_w23_qp_21.pdf" or "Physics_June_2023_P2.pdf"
    
    # Try to extract year
    year_match = re.search(r'(20\d{2})|(\d{2}(?=_[wsmj]|[WS]))', filename)
    if year_match:
        year = year_match.group(1) or ("20" + year_match.group(2))
        details["year"] = year
    
    # Try to extract series
    if re.search(r'[Jj]une?|[Mm]ay[_/-]?[Jj]une?|mj|MJ', filename):
        details["series"] = "May/June"
    elif re.search(r'[Nn]ov(ember)?|ON', filename):
        details["series"] = "October/November"
    elif re.search(r'[Mm]ar(ch)?|FM', filename):
        details["series"] = "February/March"
    
    # Try to extract variant
    variant_match = re.search(r'[Vv]ariant[_\s]?(\d)|[Pp]aper[_\s]?(\d{1,2})|_qp_(\d{1,2})', filename)
    if variant_match:
        details["variant"] = variant_match.group(1) or variant_match.group(2) or variant_match.group(3)
    
    # Try to extract syllabus code
    code_match = re.search(r'\b(0\d{3})\b', filename)
    if code_match:
        details["syllabus_code"] = code_match.group(1)
        # Map code to subject
        code_subject_map = {
            '0580': 'Mathematics', '0625': 'Physics', '0610': 'Biology',
            '0620': 'Chemistry', '0460': 'Geography', '0455': 'Economics',
            '0450': 'Business Studies', '0470': 'History'
        }
        details["subject"] = code_subject_map.get(code_match.group(1), "Unknown")
    
    return details

def extract_questions_from_text(text, paper_id, paper_title, subject, paper_details):
    """Use AI to intelligently extract questions from past paper text"""
    if not text or len(text) < 100:
        return []
    
    prompt = f"""Analyze this IGCSE {subject} past paper and extract ALL questions.

Paper Details:
- Subject: {subject}
- Year: {paper_details.get('year', 'Unknown')}
- Series: {paper_details.get('series', 'Unknown')}
- Paper: {paper_details.get('paper_number', 'Unknown')}
- Variant: {paper_details.get('variant', 'Unknown')}

Paper Text:
{text[:8000]}

Extract each question and return as JSON array. For each question include:
- question_number (e.g., "1(a)", "2(b)(i)")
- question_text (the complete question)
- marks (number of marks)
- topic (what IGCSE topic this relates to)
- requires_insert (true/false - does it reference Fig., Source, Table, etc?)

Return ONLY valid JSON array (no markdown):
[{{"question_number": "1(a)", "question_text": "...", "marks": 4, "topic": "...", "requires_insert": false}}, ...]

If text is incomplete, extract what you can find."""
    
    try:
        response, _ = ask_ai(prompt, temperature=0.2)
        clean_txt = response.replace("```json", "").replace("```", "").strip()
        questions = json.loads(clean_txt)
        
        # Add metadata to each question including paper details
        for q in questions:
            q['paper_id'] = paper_id
            q['paper_title'] = paper_title
            q['subject'] = subject
            q['year'] = paper_details.get('year', 'Unknown')
            q['series'] = paper_details.get('series', 'Unknown')
            q['variant'] = paper_details.get('variant', 'Unknown')
            q['paper_number'] = paper_details.get('paper_number', 'Unknown')
            q['syllabus_code'] = paper_details.get('syllabus_code', 'Unknown')
        
        return questions
    except Exception as e:
        print(f"Error extracting questions: {e}")
        # Fallback: simple regex extraction
        return extract_questions_fallback(text, paper_id, paper_title, subject, paper_details)

def extract_questions_fallback(text, paper_id, paper_title, subject, paper_details):
    """Fallback method using regex patterns"""
    questions = []
    # Pattern for question numbers like "1(a)", "2(b)(i)", "3", etc.
    pattern = r'(\d+(?:\([a-z]\))?(?:\([ivx]+\))?)\s+(.{20,500}?)\[(\d+)\]'
    matches = re.finditer(pattern, text, re.IGNORECASE)
    
    for match in matches:
        q_num = match.group(1)
        q_text = match.group(2).strip()
        marks = int(match.group(3))
        
        questions.append({
            'question_number': q_num,
            'question_text': q_text,
            'marks': marks,
            'topic': 'General',
            'requires_insert': bool(re.search(r'Fig\.|Source|Table|Insert|Photograph', q_text, re.IGNORECASE)),
            'paper_id': paper_id,
            'paper_title': paper_title,
            'subject': subject,
            'year': paper_details.get('year', 'Unknown'),
            'series': paper_details.get('series', 'Unknown'),
            'variant': paper_details.get('variant', 'Unknown'),
            'paper_number': paper_details.get('paper_number', 'Unknown'),
            'syllabus_code': paper_details.get('syllabus_code', 'Unknown')
        })
    
    return questions

def process_insert_file(insert_file):
    """Process insert file (PDF or image)"""
    if insert_file is None:
        return None, None
    
    try:
        file_name = insert_file.name
        file_ext = file_name.lower().split('.')[-1]
        
        if file_ext == 'pdf':
            # Extract text and try to get images from PDF
            text = extract_text_from_pdf(insert_file)
            return text, "pdf"
        elif file_ext in ['jpg', 'jpeg', 'png', 'gif']:
            # Store image
            image = Image.open(insert_file)
            return image, "image"
        else:
            return None, None
    except Exception as e:
        print(f"Error processing insert: {e}")
        return None, None

# ---------- 6. AI Tutor with Multi-Model Support ----------
def ai_tutor_chat(message, history, subject, topic):
    if not message.strip():
        return history

    subject_context = {
        "Geography": "You are an expert IGCSE Geography tutor. Focus on physical and human geography, case studies, map skills, and geographical skills. Use real-world examples and encourage critical thinking about global issues.",
        "History": "You are an expert IGCSE History tutor. Focus on historical analysis, source evaluation, causation, consequence, and continuity/change. Encourage evidence-based arguments and historical context.",
        "Business": "You are an expert IGCSE Business Studies tutor. Focus on business concepts, real-world applications, case studies, and analytical skills. Help students understand business decisions and their impacts."
    }

    system = f"""{subject_context[subject]}
Focus on {topic or 'any topic'}. Be encouraging, clear, and pedagogical.
Provide detailed explanations with examples and real-world applications.
Use case studies where appropriate and help students develop exam skills.
Encourage critical thinking and analytical skills."""
    
    # Build conversation context
    conversation = ""
    for user_msg, bot_msg in history[-5:]:
        if user_msg:
            conversation += f"Student: {user_msg}\n"
        if bot_msg:
            clean_msg = bot_msg.replace("๐Ÿ”ต ", "").replace("๐ŸŸข ", "").replace("๐ŸŸฃ ", "")
            conversation += f"Tutor: {clean_msg}\n"
    
    conversation += f"Student: {message}\nTutor:"
    full_prompt = f"{system}\n\nConversation:\n{conversation}"
    
    bot_response, source = ask_ai(full_prompt, temperature=0.7)
    
    # Add source indicator if not from Gemini
    if source == "cohere":
        bot_response = f"๐Ÿ”ต {bot_response}"
    elif source == "zai":
        bot_response = f"๐ŸŸข {bot_response}"
    elif source == "minimax":
        bot_response = f"๐ŸŸฃ {bot_response}"
    
    history.append((message, bot_response))
    return history

def clear_chat():
    return []

# ---------- 7. Case Study Generator ----------
def generate_case_study(subject, topic):
    if not topic:
        return "Select a topic first!"
    
    prompt = f"""Create a detailed IGCSE {subject} case study for the topic: "{topic}".

The case study should include:
1. Real-world example or location (be specific)
2. Background context and key facts
3. Relevant data and statistics
4. Analysis points and key issues
5. Different perspectives/stakeholders
6. Impacts (economic, social, environmental where relevant)
7. Exam-style questions students could practice

Make it engaging, factual, and exam-relevant for IGCSE level."""
    
    response, source = ask_ai(prompt, temperature=0.6)
    
    if source in ["cohere", "zai", "minimax"]:
        response = f"{response}\n\n_[Generated by {source.title()}]_"
    
    return response

# ---------- 8. Source Analysis (for History) ----------
def analyze_source(source_text, question):
    if not source_text.strip():
        return "Enter a source to analyze."
    
    prompt = f"""As an IGCSE History examiner, analyze this historical source:

SOURCE:
{source_text}

QUESTION: {question if question else "Evaluate the usefulness of this source for a historian studying this period."}

Provide:
1. **Content Analysis**: What information does the source provide?
2. **Provenance**: Origin, author, date, audience, purpose (if determinable)
3. **Reliability**: How reliable is this source? What are its limitations?
4. **Usefulness**: How useful is it for historians? What can/can't it tell us?
5. **Context**: What historical context is needed to understand this source?
6. **Cross-reference**: What other sources would help verify/challenge this?

Use IGCSE History exam criteria and techniques."""
    
    response, source = ask_ai(prompt, temperature=0.4)
    
    if source in ["cohere", "zai", "minimax"]:
        response = f"{response}\n\n_[Analysis by {source.title()}]_"
    
    return response

# ---------- 9. Business Calculator ----------
def business_calculator(calc_type, values):
    """Handle business calculations with AI explanation"""
    
    calculations = {
        "Break-even": "Fixed Costs รท (Selling Price - Variable Cost per unit)",
        "Profit": "Total Revenue - Total Costs",
        "Gross Profit Margin": "(Gross Profit รท Revenue) ร— 100",
        "Net Profit Margin": "(Net Profit รท Revenue) ร— 100",
        "Market Share": "(Company Sales รท Total Market Sales) ร— 100",
        "Return on Investment": "((Profit - Investment) รท Investment) ร— 100"
    }
    
    prompt = f"""Explain how to calculate {calc_type} in IGCSE Business Studies.

Formula: {calculations.get(calc_type, "Standard business formula")}

Given values: {values}

Provide:
1. Step-by-step calculation
2. Clear explanation of what each component means
3. What the result tells us about the business
4. How this metric is used in business decisions
5. Limitations of this metric"""
    
    response, source = ask_ai(prompt, temperature=0.3)
    
    if source in ["cohere", "zai", "minimax"]:
        response = f"{response}\n\n_[Explained by {source.title()}]_"
    
    return response

# ---------- 10. Practice Questions (Enhanced with PDF context) ----------
def generate_question(subject, topic):
    if not topic:
        return "Select a topic!", "", ""
    
    # Get relevant PDF content if available
    pdf_context = ""
    for paper_id, content in pdf_content_storage.items():
        paper = next((p for p in papers_storage if p['id'] == paper_id), None)
        if paper and paper['subject'] == subject:
            pdf_context += f"\n\nReference material from {paper['title']}:\n{content[:3000]}"
    
    question_guidance = {
        "Geography": "Include command words (describe, explain, evaluate). May require case study knowledge or map interpretation.",
        "History": "Include source material or ask about causation/consequence. Test historical analysis and evaluation skills.",
        "Business": "Include a business scenario or data. Test application of business concepts and analytical skills."
    }
    
    prompt = f"""Create ONE high-quality IGCSE {subject} exam question on the topic: "{topic}".
{question_guidance[subject]}
{"Base the question style on this reference material:" + pdf_context if pdf_context else "Create an authentic exam-style question."}

The question should:
- Use appropriate exam command words
- Be worth 6-8 marks
- Test both knowledge and analysis/evaluation
- Include any necessary context or data
- Be answerable in 8-12 minutes

Return ONLY valid JSON (no markdown):
{{"question": "complete question with context", "expectedAnswer": "key points a good answer should include", "markScheme": "detailed marking criteria with mark allocations"}}"""
    
    response, source = ask_ai(prompt, temperature=0.4)
    
    try:
        clean_txt = response.replace("```json", "").replace("```", "").strip()
        data = json.loads(clean_txt)
        return data["question"], data.get("expectedAnswer", ""), data.get("markScheme", "")
    except Exception as e:
        return response, "", f"Error: {e}"

def check_answer(question, expected, user_answer, subject):
    if not user_answer.strip():
        return "Write your answer first!"
    
    subject_criteria = {
        "Geography": "geographical knowledge, case study examples, use of terminology, analysis of causes/effects/solutions",
        "History": "historical knowledge, use of sources/evidence, analysis of causation/consequence, balanced evaluation",
        "Business": "business knowledge, application to scenarios, analysis using business concepts, justified recommendations"
    }
    
    prompt = f"""Evaluate this IGCSE {subject} answer using exam board criteria:

Question: {question}
Expected: {expected}

Student's answer:
{user_answer}

Assess based on: {subject_criteria[subject]}

Return JSON (no markdown):
{{"isCorrect": true/false, "score": 0-100, "marks": "X/8", "feedback": "detailed feedback on content and exam technique", "improvements": "specific suggestions", "strengths": "what was done well", "examTips": "exam-specific advice"}}"""
    
    response, source = ask_ai(prompt, temperature=0.3)
    
    try:
        clean_txt = response.replace("```json", "").replace("```", "").strip()
        fb = json.loads(clean_txt)
        result = f"""๐Ÿ“Š Score: {fb.get('score', 'N/A')}% ({fb.get('marks', 'N/A')})

๐Ÿ“ Detailed Feedback:
{fb['feedback']}

โœ… Your Strengths:
{fb.get('strengths', 'Good effort!')}

๐Ÿ“ˆ How to Improve:
{fb['improvements']}

๐Ÿ’ก Exam Tips:
{fb.get('examTips', 'Keep practicing!')}"""
        
        if source in ["cohere", "zai", "minimax"]:
            result += f"\n\n_[Graded by {source.title()}]_"
        
        return result
    except Exception:
        return response

# ---------- 11. Enhanced Past Papers System with Paper Intelligence ----------
def search_questions_by_topic(subject, topic):
    """Search for questions matching a specific topic"""
    if not questions_index:
        return "๐Ÿ“ญ No questions available yet. Admin needs to upload past papers first!"
    
    # Filter questions
    matching = [q for q in questions_index 
                if q['subject'] == subject and 
                (topic.lower() in q['topic'].lower() or topic.lower() in q['question_text'].lower())]
    
    if not matching:
        return f"๐Ÿ“ญ No questions found for {topic} in {subject}. Try a different topic or broader search."
    
    # Format output with paper details
    result = f"### ๐ŸŽฏ Found {len(matching)} question(s) on '{topic}' in {subject}\n\n"
    
    for i, q in enumerate(matching, 1):
        insert_note = " ๐Ÿ–ผ๏ธ **[Requires Insert]**" if q.get('requires_insert') else ""
        
        # Enhanced paper info display
        paper_info = f"**{q['year']} {q['series']}** - Paper {q['paper_number']}"
        if q.get('variant') != 'Unknown':
            paper_info += f" Variant {q['variant']}"
        if q.get('syllabus_code') != 'Unknown':
            paper_info += f" ({q['syllabus_code']})"
        
        result += f"""**Question {i}** - {paper_info}
๐Ÿ“ **{q['question_number']}** [{q['marks']} marks]{insert_note}
{q['question_text']}

{'โ”€'*80}
"""
    
    return result

def get_paper_insert(paper_id):
    """Retrieve insert for a specific paper"""
    if paper_id in insert_storage:
        insert_data, insert_type = insert_storage[paper_id]
        if insert_type == "image":
            return insert_data, "Image insert loaded โœ…"
        elif insert_type == "pdf":
            return None, f"Insert text:\n\n{insert_data[:2000]}..."
    return None, "No insert available for this paper"

def view_papers_student(subject):
    """View all papers for a subject with detailed information"""
    filtered = [p for p in papers_storage if p["subject"] == subject]
    if not filtered:
        return f"๐Ÿ“ญ No {subject} papers available."
    
    result = ""
    for p in filtered:
        insert_note = " ๐Ÿ–ผ๏ธ Insert Available" if p['id'] in insert_storage else ""
        q_count = len([q for q in questions_index if q['paper_id'] == p['id']])
        
        # Get paper details
        paper_details = p.get('paper_details', {})
        year = paper_details.get('year', 'Unknown')
        series = paper_details.get('series', 'Unknown')
        variant = paper_details.get('variant', 'Unknown')
        paper_num = paper_details.get('paper_number', 'Unknown')
        syllabus = paper_details.get('syllabus_code', 'Unknown')
        
        paper_info = f"**{year} {series}** - Paper {paper_num}"
        if variant != 'Unknown':
            paper_info += f" Variant {variant}"
        if syllabus != 'Unknown':
            paper_info += f" ({syllabus})"
        
        result += f"""**{p['title']}** {'๐Ÿ“„ PDF' if p.get('has_pdf') else ''}{insert_note}
{paper_info}
โฐ Uploaded: {p['uploaded_at']} | ๐Ÿ“ {q_count} questions extracted
{p['content'][:200]}...

{'โ•'*80}
"""
    
    return result

# ---------- 12. Admin Functions with Enhanced Paper Processing ----------
def verify_admin_password(password):
    if password == ADMIN_PASSWORD:
        return gr.update(visible=True), gr.update(visible=False), "โœ… Access granted!"
    return gr.update(visible=False), gr.update(visible=True), "โŒ Incorrect password!"

def upload_paper(title, subject, content, pdf_file, insert_file):
    """Enhanced upload with AI-powered paper identification and question extraction"""
    if not all([title, subject, content]):
        return "โš  Please fill all required fields!", get_papers_list(), "๐Ÿ“Š Status: Waiting for upload"
    
    paper_id = len(papers_storage) + 1
    
    # Process PDF
    pdf_text = ""
    paper_details = {}
    if pdf_file is not None:
        pdf_text = extract_text_from_pdf(pdf_file)
        if pdf_text and not pdf_text.startswith("Error"):
            # Use AI to identify paper details
            paper_details = identify_paper_details(pdf_text, pdf_file.name)
            pdf_content_storage[paper_id] = pdf_text
            
            # Add paper details to content
            detail_str = f"\n\n๐Ÿ“‹ **Paper Details:**"
            detail_str += f"\n- Year: {paper_details.get('year', 'Unknown')}"
            detail_str += f"\n- Series: {paper_details.get('series', 'Unknown')}"
            detail_str += f"\n- Paper: {paper_details.get('paper_number', 'Unknown')}"
            detail_str += f"\n- Variant: {paper_details.get('variant', 'Unknown')}"
            if paper_details.get('syllabus_code') != 'Unknown':
                detail_str += f"\n- Syllabus Code: {paper_details.get('syllabus_code')}"
            content += detail_str
            content += f"\n[๐Ÿ“„ PDF extracted: {len(pdf_text)} characters]"
    
    # Process Insert
    insert_data = None
    insert_type = None
    if insert_file is not None:
        insert_data, insert_type = process_insert_file(insert_file)
        if insert_data:
            insert_storage[paper_id] = (insert_data, insert_type)
            content += f"\n[๐Ÿ–ผ๏ธ Insert attached: {insert_type}]"
    
    # Add paper to storage
    papers_storage.append({
        "id": paper_id,
        "title": title,
        "subject": subject,
        "content": content,
        "has_pdf": bool(pdf_text and not pdf_text.startswith("Error")),
        "has_insert": bool(insert_data),
        "paper_details": paper_details,
        "uploaded_at": datetime.now().strftime("%Y-%m-%d %H:%M")
    })
    
    # Extract questions from PDF using AI
    status_msg = "โœ… Paper uploaded!"
    if pdf_text and not pdf_text.startswith("Error"):
        status_msg += "\nโณ AI is extracting questions and analyzing paper structure..."
        questions = extract_questions_from_text(pdf_text, paper_id, title, subject, paper_details)
        questions_index.extend(questions)
        
        # Enhanced status with paper details
        paper_info = f"{paper_details.get('year', 'Unknown')} {paper_details.get('series', 'Unknown')}"
        if paper_details.get('variant') != 'Unknown':
            paper_info += f" Variant {paper_details.get('variant')}"
        
        status_msg += f"\nโœ… Extracted {len(questions)} questions from **{paper_info}**!"
        status_msg += f"\n๐Ÿ“‹ Identified as: {subject} Paper {paper_details.get('paper_number', 'Unknown')}"
    
    return status_msg, get_papers_list(), f"๐Ÿ“Š Total papers: {len(papers_storage)} | Total questions: {len(questions_index)}"

def get_papers_list():
    """Get formatted list of all papers with detailed information"""
    if not papers_storage:
        return "No papers yet."
    
    result = []
    for p in papers_storage:
        paper_details = p.get('paper_details', {})
        year = paper_details.get('year', 'Unknown')
        series = paper_details.get('series', 'Unknown')
        variant = paper_details.get('variant', 'Unknown')
        paper_num = paper_details.get('paper_number', 'Unknown')
        
        paper_info = f"{year} {series} - Paper {paper_num}"
        if variant != 'Unknown':
            paper_info += f" V{variant}"
        
        insert_icon = '๐Ÿ–ผ๏ธ Insert' if p.get('has_insert') else ''
        pdf_icon = '๐Ÿ“„ PDF' if p.get('has_pdf') else ''
        
        result.append(f"**{p['title']}** ({p['subject']}) {pdf_icon} {insert_icon}\n{paper_info}\nโฐ {p['uploaded_at']}\n{p['content'][:120]}...\n{'โ”€'*60}")
    
    return "\n".join(result)

# ---------- 13. Gradio UI ----------
with gr.Blocks(theme=gr.themes.Soft(), title="IGCSE Platform") as app:
    gr.Markdown("""
    # ๐ŸŽ“ IGCSE Learning Platform
    Geography ๐ŸŒ | History ๐Ÿ“œ | Business ๐Ÿ’ผ
    _Powered by Gemini AI with intelligent multi-model fallback system_
    """)

    with gr.Tabs():
        # โ”€โ”€โ”€โ”€โ”€ STUDENT PORTAL โ”€โ”€โ”€โ”€โ”€
        with gr.Tab("๐Ÿ‘จโ€๐ŸŽ“ Student Portal"):
            with gr.Tabs():
                # AI TUTOR
                with gr.Tab("๐Ÿค– AI Tutor"):
                    gr.Markdown("### Chat with Your AI Tutor\n*Get expert help in Geography, History, or Business*")
                    with gr.Row():
                        subj = gr.Radio(["Geography", "History", "Business"], label="Subject", value="Geography")
                        topc = gr.Dropdown(geography_topics, label="Topic (optional)", allow_custom_value=True)

                    def update_topics(s):
                        topics = {"Geography": geography_topics, "History": history_topics, "Business": business_topics}
                        return gr.Dropdown(choices=topics[s], value=None)
                    subj.change(update_topics, subj, topc)

                    chat = gr.Chatbot(height=450, show_label=False)
                    txt = gr.Textbox(placeholder="Ask anything... e.g., 'Explain causes of earthquakes' or 'What led to WWI?'", label="Message")
                    with gr.Row():
                        send = gr.Button("Send ๐Ÿ“ค", variant="primary")
                        clr = gr.Button("Clear ๐Ÿ—‘")
                    send.click(ai_tutor_chat, [txt, chat, subj, topc], chat)
                    txt.submit(ai_tutor_chat, [txt, chat, subj, topc], chat)
                    clr.click(clear_chat, outputs=chat)

                # PAST PAPERS BROWSER - NEW!
                with gr.Tab("๐Ÿ“š Past Papers Browser"):
                    gr.Markdown("""### ๐ŸŽฏ Search Real Exam Questions by Topic
*Find actual IGCSE questions from uploaded past papers*""")
                    
                    with gr.Row():
                        pp_subject = gr.Radio(["Geography", "History", "Business"], label="Subject", value="Geography")
                        pp_topic = gr.Dropdown(geography_topics, label="Select Topic")
                    
                    pp_subject.change(update_topics, pp_subject, pp_topic)
                    
                    search_btn = gr.Button("๐Ÿ” Search Questions", variant="primary", size="lg")
                    questions_output = gr.Markdown(label="Questions Found", value="Select a topic and click Search")
                    
                    search_btn.click(search_questions_by_topic, [pp_subject, pp_topic], questions_output)
                    
                    gr.Markdown("---\n### ๐Ÿ“„ Browse All Papers")
                    browse_subject = gr.Radio(["Geography", "History", "Business"], label="Subject", value="Geography")
                    papers_display = gr.Markdown(label="Available Papers")
                    gr.Button("๐Ÿ“– Show All Papers").click(view_papers_student, browse_subject, papers_display)

                # CASE STUDIES
                with gr.Tab("๐Ÿ“‹ Case Studies"):
                    gr.Markdown("### Generate Detailed Case Studies")
                    with gr.Row():
                        cs_subj = gr.Radio(["Geography", "History", "Business"], label="Subject", value="Geography")
                        cs_topic = gr.Dropdown(geography_topics, label="Topic")
                    cs_subj.change(update_topics, cs_subj, cs_topic)
                    cs_output = gr.Textbox(lines=20, label="Case Study", interactive=False)
                    gr.Button("๐Ÿ” Generate Case Study", variant="primary").click(
                        generate_case_study, [cs_subj, cs_topic], cs_output
                    )

                # SOURCE ANALYSIS (History)
                with gr.Tab("๐Ÿ“œ Source Analysis"):
                    gr.Markdown("### Historical Source Analysis Tool")
                    source_text = gr.Textbox(lines=8, label="๐Ÿ“„ Paste Historical Source", 
                                            placeholder="Paste the source text here (e.g., extract from a speech, letter, document...)")
                    source_q = gr.Textbox(label="โ“ Question (optional)", 
                                         placeholder="e.g., 'How useful is this source for understanding...?'")
                    source_output = gr.Textbox(lines=16, label="Analysis", interactive=False)
                    gr.Button("๐Ÿ” Analyze Source", variant="primary").click(
                        analyze_source, [source_text, source_q], source_output
                    )

                # BUSINESS CALCULATOR
                with gr.Tab("๐Ÿ’ฐ Business Calculator"):
                    gr.Markdown("### Business Calculations & Explanations")
                    calc_type = gr.Dropdown(
                        ["Break-even", "Profit", "Gross Profit Margin", "Net Profit Margin", 
                         "Market Share", "Return on Investment"],
                        label="Calculation Type"
                    )
                    calc_values = gr.Textbox(lines=3, label="Values", 
                                            placeholder="e.g., Fixed Costs: $10,000, Price: $50, Variable Cost: $30")
                    calc_output = gr.Textbox(lines=14, label="Calculation & Explanation", interactive=False)
                    gr.Button("๐Ÿงฎ Calculate & Explain", variant="primary").click(
                        business_calculator, [calc_type, calc_values], calc_output
                    )

                # PRACTICE QUESTIONS
                with gr.Tab("โœ Practice"):
                    gr.Markdown("### Generate & Practice Exam Questions")
                    with gr.Row():
                        ps = gr.Radio(["Geography", "History", "Business"], label="Subject", value="Geography")
                        pt = gr.Dropdown(geography_topics, label="Topic")
                    ps.change(update_topics, ps, pt)

                    q = gr.Textbox(label="๐Ÿ“ Question", lines=6, interactive=False)
                    exp = gr.Textbox(label="Expected Answer Points", lines=3, visible=False)
                    mark = gr.Textbox(label="๐Ÿ“Š Mark Scheme", lines=4, interactive=False)
                    ans = gr.Textbox(lines=10, label="โœ Your Answer", placeholder="Type your answer here...")
                    fb = gr.Textbox(lines=14, label="๐Ÿ“‹ Feedback", interactive=False)

                    with gr.Row():
                        gr.Button("๐ŸŽฒ Generate Question", variant="primary").click(
                            generate_question, [ps, pt], [q, exp, mark]
                        )
                        gr.Button("โœ… Check Answer", variant="secondary").click(
                            check_answer, [q, exp, ans, ps], fb
                        )

        # โ”€โ”€โ”€โ”€โ”€ ADMIN PANEL โ”€โ”€โ”€โ”€โ”€
        with gr.Tab("๐Ÿ” Admin Panel"):
            with gr.Column() as login_section:
                gr.Markdown("### ๐Ÿ” Admin Login")
                pwd = gr.Textbox(label="Password", type="password", placeholder="Enter admin password")
                login_btn = gr.Button("๐Ÿ”“ Login", variant="primary")
                login_status = gr.Textbox(label="Status", interactive=False)
            
            with gr.Column(visible=False) as admin_section:
                gr.Markdown("""### ๐Ÿ“ค Upload Past Papers & Resources
                
**Instructions:**
1. **Title**: e.g., "Paper 2 Geography - June 2023"
2. **Subject**: Select Geography, History, or Business
3. **Content**: Add description, syllabus code, or notes
4. **PDF**: Upload the actual past paper (questions will be auto-extracted)
5. **Insert**: Upload any accompanying insert/resource booklet (images, maps, sources, etc.)

The system will automatically:
- Extract all questions from the PDF
- Index them by topic for student search
- Store insert materials for reference
""")
                
                with gr.Row():
                    with gr.Column():
                        t = gr.Textbox(label="๐Ÿ“‹ Title", placeholder="e.g., Paper 2 - June 2023")
                        s = gr.Radio(["Geography", "History", "Business"], label="Subject", value="Geography")
                        c = gr.Textbox(lines=5, label="Content/Description", 
                                      placeholder="Add notes, syllabus code, or instructions...")
                        pdf = gr.File(label="๐Ÿ“„ Past Paper PDF (questions will be extracted)", file_types=[".pdf"])
                        insert = gr.File(label="๐Ÿ–ผ๏ธ Insert/Resource Booklet (optional)", 
                                        file_types=[".pdf", ".jpg", ".jpeg", ".png"])
                        
                        up = gr.Button("โฌ† Upload Paper", variant="primary", size="lg")
                        st = gr.Textbox(label="Upload Status", lines=3)
                        stats = gr.Textbox(label="๐Ÿ“Š Database Statistics", value="๐Ÿ“Š Status: No papers uploaded yet")
                    
                    with gr.Column():
                        gr.Markdown("### ๐Ÿ“š All Uploaded Papers")
                        lst = gr.Textbox(lines=24, label="Papers Database", value=get_papers_list(), 
                                        interactive=False, show_label=False)
                
                up.click(upload_paper, [t, s, c, pdf, insert], [st, lst, stats])
            
            login_btn.click(verify_admin_password, [pwd], [admin_section, login_section, login_status])

    gr.Markdown("""
    ---
    **System Status:** ๐ŸŸข Gemini AI (Primary) | ๐Ÿ”ต Cohere (Secondary) | ๐ŸŸข Z.ai (Tertiary) | ๐ŸŸฃ MiniMax (Fallback)
    
    **Features:**
    - ๐ŸŽฏ Smart question extraction from past papers
    - ๐Ÿ–ผ๏ธ Insert/resource support for visual materials
    - ๐Ÿ” Topic-based question search
    - ๐Ÿค– Multi-AI fallback system for reliability
    """)

app.launch()