Update app.py
Browse files
app.py
CHANGED
|
@@ -1,176 +1,148 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
| 2 |
-
import joblib
|
| 3 |
-
import pandas as pd
|
| 4 |
-
from datetime import datetime
|
| 5 |
-
from typing import Literal, Annotated
|
| 6 |
-
from pydantic import BaseModel, Field
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
HF_REPO = "samithcs/heart-rate-models"
|
| 14 |
-
HEART_MODEL_FILENAME = "Heart_Rate_Predictor_model.joblib"
|
| 15 |
-
ANOMALY_MODEL_FILENAME = "Anomaly_Detector_model.joblib"
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
url =
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
for stage in ['light_sleep', 'deep_sleep', 'rem_sleep']:
|
| 150 |
-
data_dict[f"sleep_stage_{stage}"] = 1 if data_dict['sleep_stage'] == stage else 0
|
| 151 |
-
|
| 152 |
-
return pd.DataFrame([{f: data_dict.get(f, 0) for f in anomaly_features}])
|
| 153 |
-
|
| 154 |
-
# ===============================
|
| 155 |
-
# Endpoints
|
| 156 |
-
# ===============================
|
| 157 |
-
@app.post("/predict_heart_rate")
|
| 158 |
-
def predict_heart_rate(input_data: HeartRateInput):
|
| 159 |
-
try:
|
| 160 |
-
data_dict = input_data.model_dump()
|
| 161 |
-
X = preprocess_heart_features(data_dict)
|
| 162 |
-
prediction = heart_model.predict(X)[0]
|
| 163 |
-
return {"heart_rate_prediction": float(prediction)}
|
| 164 |
-
except Exception as e:
|
| 165 |
-
return {"error": str(e)}
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
@app.post("/detect_anomaly")
|
| 169 |
-
def detect_anomaly(input_data: AnomalyInput):
|
| 170 |
-
try:
|
| 171 |
-
data_dict = input_data.model_dump()
|
| 172 |
-
X = preprocess_anomaly_features(data_dict)
|
| 173 |
-
prediction = anomaly_model.predict(X)[0]
|
| 174 |
-
return {"anomaly_detected": bool(prediction)}
|
| 175 |
-
except Exception as e:
|
| 176 |
-
return {"error": str(e)}
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
import joblib
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
from typing import Literal, Annotated
|
| 6 |
+
from pydantic import BaseModel, Field
|
| 7 |
+
import os
|
| 8 |
+
import requests
|
| 9 |
+
|
| 10 |
+
# ===============================
|
| 11 |
+
# Configuration
|
| 12 |
+
# ===============================
|
| 13 |
+
HF_REPO = "samithcs/heart-rate-models"
|
| 14 |
+
HEART_MODEL_FILENAME = "Heart_Rate_Predictor_model.joblib"
|
| 15 |
+
ANOMALY_MODEL_FILENAME = "Anomaly_Detector_model.joblib"
|
| 16 |
+
MODEL_DIR = os.path.join("artifacts", "model_trainer")
|
| 17 |
+
os.makedirs(MODEL_DIR, exist_ok=True)
|
| 18 |
+
|
| 19 |
+
# ===============================
|
| 20 |
+
# Hugging Face download helper
|
| 21 |
+
# ===============================
|
| 22 |
+
def download_from_hf(filename):
|
| 23 |
+
local_path = os.path.join(MODEL_DIR, filename)
|
| 24 |
+
if os.path.exists(local_path):
|
| 25 |
+
print(f"✅ {filename} already exists at {local_path}")
|
| 26 |
+
return local_path
|
| 27 |
+
|
| 28 |
+
url = f"https://huggingface.co/{HF_REPO}/resolve/main/{filename}"
|
| 29 |
+
print(f"⬇️ Downloading {filename} from {url} ...")
|
| 30 |
+
with requests.get(url, stream=True) as r:
|
| 31 |
+
r.raise_for_status()
|
| 32 |
+
with open(local_path, "wb") as f:
|
| 33 |
+
for chunk in r.iter_content(chunk_size=8192):
|
| 34 |
+
f.write(chunk)
|
| 35 |
+
print(f"✅ Downloaded {filename} to {local_path}")
|
| 36 |
+
return local_path
|
| 37 |
+
|
| 38 |
+
# ===============================
|
| 39 |
+
# FastAPI app
|
| 40 |
+
# ===============================
|
| 41 |
+
app = FastAPI(title="Health Monitoring API")
|
| 42 |
+
|
| 43 |
+
# ===============================
|
| 44 |
+
# Request schemas
|
| 45 |
+
# ===============================
|
| 46 |
+
class HeartRateInput(BaseModel):
|
| 47 |
+
age: Annotated[int, Field(..., gt=0, lt=120)]
|
| 48 |
+
gender: Annotated[Literal['M', 'F'], Field(...)]
|
| 49 |
+
weight_kg: Annotated[float, Field(..., gt=0)]
|
| 50 |
+
height_cm: Annotated[float, Field(..., gt=0, lt=250)]
|
| 51 |
+
bmi: Annotated[float, Field(..., gt=0, lt=100)]
|
| 52 |
+
fitness_level: Annotated[Literal['lightly_active','fairly_active','sedentary','very_active'], Field(...)]
|
| 53 |
+
performance_level: Annotated[Literal['low','moderate','high'], Field(...)]
|
| 54 |
+
resting_hr: Annotated[int, Field(..., gt=0, lt=120)]
|
| 55 |
+
max_hr: Annotated[int, Field(..., gt=0, lt=220)]
|
| 56 |
+
activity_type: Annotated[Literal['sleeping','walking','resting','light','commuting','exercise'], Field(...)]
|
| 57 |
+
activity_intensity: Annotated[float, Field(..., gt=0.0)]
|
| 58 |
+
steps_5min: Annotated[int, Field(..., gt=0)]
|
| 59 |
+
calories_5min: Annotated[float, Field(..., gt=0)]
|
| 60 |
+
hrv_rmssd: Annotated[float, Field(..., gt=0)]
|
| 61 |
+
stress_score: Annotated[int, Field(..., gt=0, lt=100)]
|
| 62 |
+
signal_quality: Annotated[float, Field(..., gt=0)]
|
| 63 |
+
skin_temperature: Annotated[float, Field(..., gt=0)]
|
| 64 |
+
device_battery: Annotated[int, Field(..., gt=0)]
|
| 65 |
+
elevation_gain: Annotated[int, Field(..., ge=0)]
|
| 66 |
+
sleep_stage: Annotated[Literal['light_sleep','deep_sleep','rem_sleep'], Field(...)]
|
| 67 |
+
date: Annotated[datetime, Field(...)]
|
| 68 |
+
|
| 69 |
+
class AnomalyInput(BaseModel):
|
| 70 |
+
heart_rate: Annotated[float, Field(..., gt=0.0)]
|
| 71 |
+
resting_hr_baseline: Annotated[int, Field(..., gt=0, lt=120)]
|
| 72 |
+
activity_type: Annotated[Literal['sleeping','walking','resting','light','commuting','exercise'], Field(...)]
|
| 73 |
+
activity_intensity: Annotated[float, Field(..., gt=0)]
|
| 74 |
+
steps_5min: Annotated[int, Field(..., gt=0)]
|
| 75 |
+
calories_5min: Annotated[float, Field(..., gt=0)]
|
| 76 |
+
hrv_rmssd: Annotated[float, Field(..., gt=0)]
|
| 77 |
+
stress_score: Annotated[int, Field(..., gt=0, lt=100)]
|
| 78 |
+
confidence_score: Annotated[float, Field(..., gt=0.0)]
|
| 79 |
+
signal_quality: Annotated[float, Field(..., gt=0)]
|
| 80 |
+
skin_temperature: Annotated[float, Field(..., gt=0)]
|
| 81 |
+
device_battery: Annotated[int, Field(..., gt=0)]
|
| 82 |
+
elevation_gain: Annotated[int, Field(..., ge=0)]
|
| 83 |
+
sleep_stage: Annotated[Literal['light_sleep','deep_sleep','rem_sleep'], Field(...)]
|
| 84 |
+
date: Annotated[datetime, Field(...)]
|
| 85 |
+
|
| 86 |
+
# ===============================
|
| 87 |
+
# Startup event to download & load models
|
| 88 |
+
# ===============================
|
| 89 |
+
@app.on_event("startup")
|
| 90 |
+
def startup_event():
|
| 91 |
+
global heart_model, heart_features, anomaly_model, anomaly_features
|
| 92 |
+
|
| 93 |
+
HEART_MODEL_PATH = download_from_hf(HEART_MODEL_FILENAME)
|
| 94 |
+
ANOMALY_MODEL_PATH = download_from_hf(ANOMALY_MODEL_FILENAME)
|
| 95 |
+
|
| 96 |
+
heart_model_artifacts = joblib.load(HEART_MODEL_PATH)
|
| 97 |
+
heart_model = heart_model_artifacts['model']
|
| 98 |
+
heart_features = heart_model_artifacts['feature_columns']
|
| 99 |
+
|
| 100 |
+
anomaly_model_artifacts = joblib.load(ANOMALY_MODEL_PATH)
|
| 101 |
+
anomaly_model = anomaly_model_artifacts['model']
|
| 102 |
+
anomaly_features = anomaly_model_artifacts['feature_columns']
|
| 103 |
+
|
| 104 |
+
# ===============================
|
| 105 |
+
# Utility: preprocess features
|
| 106 |
+
# ===============================
|
| 107 |
+
def preprocess_heart_features(data_dict: dict) -> pd.DataFrame:
|
| 108 |
+
data_dict['date_encoded'] = data_dict['date'].timestamp()
|
| 109 |
+
data_dict['gender_M'] = 1 if data_dict['gender']=='M' else 0
|
| 110 |
+
data_dict['gender_F'] = 1 if data_dict['gender']=='F' else 0
|
| 111 |
+
for act in ['sleeping','walking','resting','light','commuting','exercise']:
|
| 112 |
+
data_dict[f"activity_type_{act}"] = 1 if data_dict['activity_type']==act else 0
|
| 113 |
+
for stage in ['light_sleep','deep_sleep','rem_sleep']:
|
| 114 |
+
data_dict[f"sleep_stage_{stage}"] = 1 if data_dict['sleep_stage']==stage else 0
|
| 115 |
+
return pd.DataFrame([{f: data_dict.get(f,0) for f in heart_features}])
|
| 116 |
+
|
| 117 |
+
def preprocess_anomaly_features(data_dict: dict) -> pd.DataFrame:
|
| 118 |
+
data_dict['date_encoded'] = data_dict['date'].timestamp()
|
| 119 |
+
for act in ['sleeping','walking','resting','light','commuting','exercise']:
|
| 120 |
+
data_dict[f"activity_type_{act}"] = 1 if data_dict['activity_type']==act else 0
|
| 121 |
+
for stage in ['light_sleep','deep_sleep','rem_sleep']:
|
| 122 |
+
data_dict[f"sleep_stage_{stage}"] = 1 if data_dict['sleep_stage']==stage else 0
|
| 123 |
+
return pd.DataFrame([{f: data_dict.get(f,0) for f in anomaly_features}])
|
| 124 |
+
|
| 125 |
+
# ===============================
|
| 126 |
+
# Endpoints
|
| 127 |
+
# ===============================
|
| 128 |
+
@app.get("/")
|
| 129 |
+
def home():
|
| 130 |
+
return {"message":"Health Monitoring API is running!"}
|
| 131 |
+
|
| 132 |
+
@app.post("/predict_heart_rate")
|
| 133 |
+
def predict_heart_rate(input_data: HeartRateInput):
|
| 134 |
+
try:
|
| 135 |
+
X = preprocess_heart_features(input_data.model_dump())
|
| 136 |
+
prediction = heart_model.predict(X)[0]
|
| 137 |
+
return {"heart_rate_prediction": float(prediction)}
|
| 138 |
+
except Exception as e:
|
| 139 |
+
return {"error": str(e)}
|
| 140 |
+
|
| 141 |
+
@app.post("/detect_anomaly")
|
| 142 |
+
def detect_anomaly(input_data: AnomalyInput):
|
| 143 |
+
try:
|
| 144 |
+
X = preprocess_anomaly_features(input_data.model_dump())
|
| 145 |
+
prediction = anomaly_model.predict(X)[0]
|
| 146 |
+
return {"anomaly_detected": bool(prediction)}
|
| 147 |
+
except Exception as e:
|
| 148 |
+
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|