File size: 9,458 Bytes
4aec76b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# πŸš€ Local Development Setup (Without Docker)

## Prerequisites

Before starting, ensure you have:
- Python 3.12+ installed (`python --version`)
- Ollama running locally with models installed
- PostgreSQL running locally
- Redis running locally (optional, for chat history)

---

## Step 1: Set Up Virtual Environment

```bash
# Navigate to project root
cd /path/to/rag-with-gemma3

# Activate existing venv
source venv/bin/activate

# Or create a new one if needed
python3.12 -m venv venv_local
source venv_local/bin/activate

# Verify Python version
python --version  # Should be 3.12+
```

---

## Step 2: Install Dependencies

```bash
# Upgrade pip
pip install --upgrade pip

# Install all requirements
pip install -r requirements.txt

# Verify key installations
python -c "import langchain; import streamlit; import fastapi; print('βœ… All dependencies installed')"
```

---

## Step 3: Configure Environment Variables

Create a `.env` file in the project root:

```bash
# Create .env file
cat > .env << 'EOF'
# DATABASE
DATABASE_URL=postgresql://raguser:ragpass@localhost:5432/ragdb

# REDIS (optional, for chat history)
REDIS_URL=redis://localhost:6379/0

# OLLAMA
OLLAMA_BASE_URL=http://localhost:11434
EMBEDDING_MODEL=mxbai-embed-large:latest
LLM_MODEL=gemma3:latest

# LLM CONFIG
TEMPERATURE=0.7
MAX_TOKENS=2048
CONTEXT_SIZE=4096

# HISTORY BACKEND
HISTORY_BACKEND=memory  # or 'redis' if Redis is running

# VECTOR DATABASE
VECTOR_DB_PERSIST_DIR=./user_faiss
VECTOR_DB_INDEX_NAME=index.faiss

# ENVIRONMENT
ENV_TYPE=dev
EOF

cat .env
```

---

## Step 4: Start Required Services

### Option A: Using Homebrew (macOS)

```bash
# Start PostgreSQL
brew services start postgresql

# Start Redis (optional)
brew services start redis

# Start Ollama (if not already running)
ollama serve &
```

### Option B: Using Docker (Just Services, No App)

```bash
# Start only the databases (not the app)
docker run -d \
  -p 5432:5432 \
  -e POSTGRES_USER=raguser \
  -e POSTGRES_PASSWORD=ragpass \
  -e POSTGRES_DB=ragdb \
  postgres:15

docker run -d \
  -p 6379:6379 \
  redis:latest

# For Ollama, pull required models
ollama pull mxbai-embed-large:latest
ollama pull gemma3:latest
```

### Verify Services Are Running

```bash
# PostgreSQL
psql -h localhost -U raguser -d ragdb -c "SELECT 1"  # Should return 1

# Redis
redis-cli ping  # Should return PONG

# Ollama
curl http://localhost:11434/api/tags  # Should list models
```

---

## Step 5: Initialize Database

```bash
# Create tables in PostgreSQL
python << 'EOF'
import sys
sys.path.insert(0, 'server')

from pg_db import Base, engine

# Create all tables
Base.metadata.create_all(bind=engine)
print("βœ… Database tables created successfully")
EOF
```

---

## Step 6: Start the Backend (FastAPI)

In **Terminal 1**:

```bash
# Activate venv
source venv/bin/activate

# Navigate to server directory
cd server

# Start FastAPI
uvicorn server:app --host 127.0.0.1 --port 8000 --reload

# Output should show:
# INFO:     Uvicorn running on http://127.0.0.1:8000
# INFO:     Application startup complete
```

Test the backend:

```bash
# In another terminal
curl http://localhost:8000/health  # If you have a health endpoint
# or
curl http://localhost:8000/docs  # FastAPI Swagger UI
```

---

## Step 7: Start the Frontend (Streamlit)

In **Terminal 2**:

```bash
# Activate venv
source venv/bin/activate

# Start Streamlit
streamlit run app.py --server.port 8501

# Output should show:
# You can now view your Streamlit app in your browser.
# Local URL: http://localhost:8501
```

---

## Step 8: Access the Application

Open your browser and navigate to:

| Component | URL |
|-----------|-----|
| **Frontend (Streamlit)** | http://localhost:8501 |
| **API Documentation** | http://localhost:8000/docs |
| **API Redoc** | http://localhost:8000/redoc |

---

## Complete Startup Script

Create `start_local.sh`:

```bash
#!/bin/bash

# Color output
GREEN='\033[0;32m'
BLUE='\033[0;34m'
NC='\033[0m' # No Color

# Activate venv
source venv/bin/activate

# Check services
echo -e "${BLUE}Checking required services...${NC}"

# PostgreSQL check
if ! psql -h localhost -U raguser -d ragdb -c "SELECT 1" > /dev/null 2>&1; then
    echo "❌ PostgreSQL not running. Start with: brew services start postgresql"
    exit 1
fi
echo -e "${GREEN}βœ… PostgreSQL running${NC}"

# Redis check
if ! redis-cli ping > /dev/null 2>&1; then
    echo "⚠️  Redis not running (optional). Start with: brew services start redis"
fi

# Ollama check
if ! curl -s http://localhost:11434/api/tags > /dev/null 2>&1; then
    echo "❌ Ollama not running. Start with: ollama serve"
    exit 1
fi
echo -e "${GREEN}βœ… Ollama running${NC}"

# Start backend
echo -e "${BLUE}Starting FastAPI backend...${NC}"
cd server
uvicorn server:app --host 127.0.0.1 --port 8000 --reload &
BACKEND_PID=$!
echo -e "${GREEN}βœ… Backend started (PID: $BACKEND_PID)${NC}"
sleep 2

# Start frontend
echo -e "${BLUE}Starting Streamlit frontend...${NC}"
cd ..
streamlit run app.py --server.port 8501 &
FRONTEND_PID=$!
echo -e "${GREEN}βœ… Frontend started (PID: $FRONTEND_PID)${NC}"

# Display access URLs
echo ""
echo -e "${GREEN}━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━${NC}"
echo -e "${GREEN}βœ… System is ready!${NC}"
echo -e "${GREEN}━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━${NC}"
echo ""
echo -e "Frontend: ${BLUE}http://localhost:8501${NC}"
echo -e "API Docs: ${BLUE}http://localhost:8000/docs${NC}"
echo ""
echo "Press Ctrl+C to stop all services"
echo ""

# Wait for both processes
wait
```

Make it executable and run:

```bash
chmod +x start_local.sh
./start_local.sh
```

---

## Troubleshooting

### Port Already in Use

```bash
# Find process using port 8000
lsof -i :8000
# Kill it
kill -9 <PID>

# Or use different port
uvicorn server:app --host 127.0.0.1 --port 8001
```

### PostgreSQL Connection Error

```bash
# Check if PostgreSQL is running
brew services list

# Start PostgreSQL
brew services start postgresql

# Or verify credentials
psql -h localhost -U raguser -d ragdb
```

### Ollama Connection Error

```bash
# Start Ollama
ollama serve

# Pull required models
ollama pull mxbai-embed-large:latest
ollama pull gemma3:latest

# Check available models
ollama list
```

### Import Errors

```bash
# Reinstall dependencies
pip install --force-reinstall -r requirements.txt

# Clear cache
pip cache purge

# Check Python version
python --version  # Should be 3.12+
```

### Module Not Found Errors

```bash
# Ensure PYTHONPATH includes server directory
export PYTHONPATH="${PYTHONPATH}:/path/to/rag-with-gemma3/server"

# Verify imports
python -c "import llm_system; print('βœ… llm_system imports successfully')"
```

---

## Development Tips

### 1. Use Hot Reload

Both FastAPI (`--reload`) and Streamlit auto-reload on file changes. Just save and refresh!

### 2. Monitor Logs

```bash
# Backend logs
tail -f /tmp/uvicorn.log

# Frontend logs
streamlit run app.py --logger.level=debug
```

### 3. Database Queries

```bash
# Connect to PostgreSQL
psql -h localhost -U raguser -d ragdb

# List tables
\dt

# Query vector IDs
SELECT * FROM user_files LIMIT 5;
```

### 4. Test API Endpoints

```bash
# Upload a file
curl -X POST http://localhost:8000/upload \
  -F "user_id=test_user" \
  -F "file=@/path/to/document.pdf"

# Embed file
curl -X POST http://localhost:8000/embed \
  -H "Content-Type: application/json" \
  -d '{"user_id": "test_user", "file_name": "document.pdf"}'

# Query RAG
curl -X POST http://localhost:8000/rag \
  -H "Content-Type: application/json" \
  -d '{"session_id": "test_user", "query": "What is this document about?"}'
```

---

## Performance Expectations (Local)

| Operation | Time | Notes |
|-----------|------|-------|
| File Upload | 1-2s | Depends on file size |
| Text Extraction (OCR) | 30-60s | For scanned PDFs |
| Embedding | 5-10s | Per document |
| Cache Hit | <100ms | Repeated queries |
| RAG Generation | 3-5s | With caching |
| First Response | 45-60s | Full pipeline |

---

## Next Steps

Once running locally:

1. **Upload Documents** - Test with different file formats
2. **Ask Questions** - Try various query types
3. **Monitor Performance** - Check response times in logs
4. **Adjust Settings** - Modify timeouts in `.env` if needed
5. **Explore API** - Use Swagger at http://localhost:8000/docs

---

## Environment Variables Reference

```bash
# Database
DATABASE_URL              # PostgreSQL connection string
REDIS_URL                # Redis connection string

# LLM & Embeddings
OLLAMA_BASE_URL          # Ollama server URL
EMBEDDING_MODEL          # Embedding model name
LLM_MODEL                # Language model name
TEMPERATURE              # Model temperature (0-1)
MAX_TOKENS               # Max response length
CONTEXT_SIZE             # Model context window

# Vector Database
VECTOR_DB_PERSIST_DIR    # Where to store vector DB
VECTOR_DB_INDEX_NAME     # Index filename

# History Backend
HISTORY_BACKEND          # 'memory' or 'redis'
HISTORY_TTL_SECONDS      # Chat history expiration

# Environment
ENV_TYPE                 # 'dev' or 'prod'
LOG_LEVEL                # 'DEBUG', 'INFO', 'WARNING', 'ERROR'
```

---

**You're all set!** Your RAG system is now running locally with full development capabilities. Happy coding! πŸš€