from langchain.chains import create_history_aware_retriever, create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.runnables import RunnableWithMessageHistory from .prompts import template_chat as chat_prompt from .prompts import template_summarize as summary_prompt from typing import Callable from langchain_core.vectorstores import VectorStoreRetriever from langchain_core.language_models.chat_models import BaseChatModel from logger import get_logger log = get_logger(name="chains_rag") def build_rag_chain( llm_chat: BaseChatModel, llm_summary: BaseChatModel, retriever: VectorStoreRetriever, get_history_fn: Callable): """Builds a Conversational RAG (Retrieval-Augmented Generation) chain. Args: llm_chat (BaseChatModel): The LLM model for generating chat responses. llm_summary (BaseChatModel): The LLM model for summarizing chat history. retriever (VectorStoreRetriever): The retriever to fetch relevant documents. get_history_fn (Callable): Function to retrieve chat history for a session. Returns: RunnableWithMessageHistory: A runnable chain that processes user input and chat history to provide a final answer based on retrieved documents and chat context. """ log.info("Building the Conversational RAG Chain...") # Chain to summarize the history and retrieve relevant documents # 3 User Input + Chat History > Summarizer Template > Standalone Que > Get Docs retriever_chain = create_history_aware_retriever(llm_summary, retriever, summary_prompt) log.info("Created the retriever chain with summarization.") # Chain to combine the retrieved documents and get the final answer # 4 Multiple Docs > Combine All > Chat Template > Final Output qa_chain = create_stuff_documents_chain(llm=llm_chat, prompt=chat_prompt) log.info("Created the QA chain with chat template.") # Main RAG Chain: # 2 Input + Chat History > [ `Summarizer Template` > `Get Docs` ] > [ `Combine` > `Chat Template` ] > Output rag_chain = create_retrieval_chain(retriever_chain, qa_chain) log.info("Created the main RAG chain.") log.info("Returning the final Conversational RAG Chain w history.") # 1 Final Conversational RAG Chain: return RunnableWithMessageHistory( runnable=rag_chain, get_session_history=get_history_fn, input_messages_key="input", history_messages_key="chat_history", output_messages_key="answer", )