Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import LlavaForConditionalGeneration, TextIteratorStreamer, AutoProcessor
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
from gradio_client import Client, file
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
import os
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
# Initialize Gradio client
|
| 9 |
+
client = Client("http://localhost:7861")
|
| 10 |
+
|
| 11 |
+
# Load the dataset
|
| 12 |
+
dataset = load_dataset("svjack/Dont_be_your_lover_Images")
|
| 13 |
+
|
| 14 |
+
# Create directories for saving images and results
|
| 15 |
+
os.makedirs("Dont_be_your_lover_Images_Captioned", exist_ok=True)
|
| 16 |
+
|
| 17 |
+
# Process each image in the dataset
|
| 18 |
+
for i, item in enumerate(tqdm(dataset["train"], desc="Processing images")):
|
| 19 |
+
try:
|
| 20 |
+
# Get the PIL Image object
|
| 21 |
+
pil_image = item["image"]
|
| 22 |
+
|
| 23 |
+
# Save the image locally with 000i.png format
|
| 24 |
+
img_filename = f"{i:04d}.png"
|
| 25 |
+
img_path = os.path.join("Dont_be_your_lover_Images_Captioned", img_filename)
|
| 26 |
+
pil_image.save(img_path)
|
| 27 |
+
|
| 28 |
+
# Process the image through the API
|
| 29 |
+
result = client.predict(
|
| 30 |
+
input_image=file(img_path),
|
| 31 |
+
prompt="Write a long detailed description for this image.",
|
| 32 |
+
temperature=0.6,
|
| 33 |
+
top_p=0.9,
|
| 34 |
+
max_new_tokens=512,
|
| 35 |
+
log_prompt=True,
|
| 36 |
+
api_name="/chat_joycaption"
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Save the result as a text file with the same name
|
| 40 |
+
result_filename = f"{i:04d}.txt"
|
| 41 |
+
result_path = os.path.join("Dont_be_your_lover_Images_Captioned", result_filename)
|
| 42 |
+
|
| 43 |
+
with open(result_path, "w", encoding="utf-8") as f:
|
| 44 |
+
f.write(str(result))
|
| 45 |
+
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"Error processing image {i}: {str(e)}")
|
| 48 |
+
continue
|
| 49 |
+
|
| 50 |
+
print("Processing complete!")
|
| 51 |
+
|
| 52 |
+
# Load the dataset
|
| 53 |
+
dataset = load_dataset("svjack/Origin_Images")
|
| 54 |
+
|
| 55 |
+
# Create directories for saving images and results
|
| 56 |
+
os.makedirs("Origin_Images_Captioned", exist_ok=True)
|
| 57 |
+
|
| 58 |
+
# Process each image in the dataset
|
| 59 |
+
for i, item in enumerate(tqdm(dataset["train"], desc="Processing images")):
|
| 60 |
+
try:
|
| 61 |
+
# Get the PIL Image object
|
| 62 |
+
pil_image = item["image"]
|
| 63 |
+
|
| 64 |
+
# Save the image locally with 000i.png format
|
| 65 |
+
img_filename = f"{i:04d}.png"
|
| 66 |
+
img_path = os.path.join("Origin_Images_Captioned", img_filename)
|
| 67 |
+
pil_image.save(img_path)
|
| 68 |
+
|
| 69 |
+
# Process the image through the API
|
| 70 |
+
result = client.predict(
|
| 71 |
+
input_image=file(img_path),
|
| 72 |
+
prompt="Write a long detailed description for this image.",
|
| 73 |
+
temperature=0.6,
|
| 74 |
+
top_p=0.9,
|
| 75 |
+
max_new_tokens=512,
|
| 76 |
+
log_prompt=True,
|
| 77 |
+
api_name="/chat_joycaption"
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# Save the result as a text file with the same name
|
| 81 |
+
result_filename = f"{i:04d}.txt"
|
| 82 |
+
result_path = os.path.join("Origin_Images_Captioned", result_filename)
|
| 83 |
+
|
| 84 |
+
with open(result_path, "w", encoding="utf-8") as f:
|
| 85 |
+
f.write(str(result))
|
| 86 |
+
|
| 87 |
+
except Exception as e:
|
| 88 |
+
print(f"Error processing image {i}: {str(e)}")
|
| 89 |
+
continue
|
| 90 |
+
|
| 91 |
+
print("Processing complete!")
|
| 92 |
+
'''
|
| 93 |
+
|
| 94 |
import spaces
|
| 95 |
import gradio as gr
|
| 96 |
from transformers import LlavaForConditionalGeneration, TextIteratorStreamer, AutoProcessor
|