Update code/inference.py
Browse files- code/inference.py +30 -4
code/inference.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import torch
|
| 4 |
-
|
|
|
|
| 5 |
import logging
|
| 6 |
|
| 7 |
logger = logging.getLogger(__name__)
|
|
@@ -11,6 +12,21 @@ logger = logging.getLogger(__name__)
|
|
| 11 |
# Can specify GPU device with:
|
| 12 |
# CUDA_VISIBLE_DEVICES="1" python script.py
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def model_fn(model_dir, context=None):
|
| 15 |
"""Load the model for inference"""
|
| 16 |
try:
|
|
@@ -22,15 +38,25 @@ def model_fn(model_dir, context=None):
|
|
| 22 |
torch.cuda.empty_cache()
|
| 23 |
logger.info(f"Using device: {device}")
|
| 24 |
|
| 25 |
-
# Load tokenizer
|
| 26 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
model_id,
|
| 29 |
-
|
| 30 |
torch_dtype=torch.bfloat16 if device.type == 'cuda' else torch.float32,
|
| 31 |
trust_remote_code=True
|
| 32 |
)
|
| 33 |
|
|
|
|
|
|
|
|
|
|
| 34 |
# Move model to device
|
| 35 |
model = model.to(device)
|
| 36 |
|
|
|
|
| 1 |
import os
|
| 2 |
import json
|
| 3 |
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
from transformers import AutoModel, AutoTokenizer, AutoConfig
|
| 6 |
import logging
|
| 7 |
|
| 8 |
logger = logging.getLogger(__name__)
|
|
|
|
| 12 |
# Can specify GPU device with:
|
| 13 |
# CUDA_VISIBLE_DEVICES="1" python script.py
|
| 14 |
|
| 15 |
+
class PhiForSequenceClassification(nn.Module):
|
| 16 |
+
def __init__(self, base_model, num_labels=2):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.phi = base_model
|
| 19 |
+
# Create classifier with same dtype as base model
|
| 20 |
+
dtype = next(base_model.parameters()).dtype
|
| 21 |
+
self.classifier = nn.Linear(self.phi.config.hidden_size, num_labels, dtype=dtype)
|
| 22 |
+
|
| 23 |
+
def forward(self, **inputs):
|
| 24 |
+
outputs = self.phi(**inputs, output_hidden_states=True)
|
| 25 |
+
# Use the last hidden state of the last token for classification
|
| 26 |
+
last_hidden_state = outputs.hidden_states[-1][:, -1, :]
|
| 27 |
+
logits = self.classifier(last_hidden_state)
|
| 28 |
+
return type('Outputs', (), {'logits': logits})()
|
| 29 |
+
|
| 30 |
def model_fn(model_dir, context=None):
|
| 31 |
"""Load the model for inference"""
|
| 32 |
try:
|
|
|
|
| 38 |
torch.cuda.empty_cache()
|
| 39 |
logger.info(f"Using device: {device}")
|
| 40 |
|
| 41 |
+
# Load tokenizer
|
| 42 |
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 43 |
+
|
| 44 |
+
# Load config and specify it's a Phi3Config
|
| 45 |
+
config = AutoConfig.from_pretrained(model_id,
|
| 46 |
+
num_labels=2,
|
| 47 |
+
trust_remote_code=True)
|
| 48 |
+
|
| 49 |
+
# Load base model
|
| 50 |
+
base_model = AutoModel.from_pretrained(
|
| 51 |
model_id,
|
| 52 |
+
config=config,
|
| 53 |
torch_dtype=torch.bfloat16 if device.type == 'cuda' else torch.float32,
|
| 54 |
trust_remote_code=True
|
| 55 |
)
|
| 56 |
|
| 57 |
+
# Create classification model
|
| 58 |
+
model = PhiForSequenceClassification(base_model, num_labels=2)
|
| 59 |
+
|
| 60 |
# Move model to device
|
| 61 |
model = model.to(device)
|
| 62 |
|