File size: 12,874 Bytes
f92290e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
#!/usr/bin/env python3
"""
create_test_embedding_lora.py
Create a test LoRA adapter containing specified modules
Based on correct dimension specifications from SGLang layers.py
"""
import json
import os
import torch
from pathlib import Path
def create_test_embedding_lora(
output_dir="./test_embedding_lora",
base_model="meta-llama/Llama-2-7b-hf",
lora_rank=8,
lora_alpha=16,
target_modules=None,
added_tokens=None,
):
"""
Create a test LoRA adapter containing specified modules
Args:
output_dir: Output directory
base_model: Base model name
lora_rank: LoRA rank
lora_alpha: LoRA alpha
target_modules: List of target modules to generate LoRA for, defaults to ["embed_tokens", "lm_head"]
added_tokens: Content of added_tokens.json (dictionary), defaults to empty
Supported target_modules:
- embed_tokens: Word embedding layer
- lm_head: Language model head
- q_proj, k_proj, v_proj, o_proj: Attention layers
- gate_proj, up_proj, down_proj: FFN layers
"""
# Default: only generate embed_tokens and lm_head
if target_modules is None:
# target_modules = ["embed_tokens", "lm_head"]
target_modules = ["embed_tokens", "lm_head", "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
# Llama-2-7b configuration
vocab_size = 32000
embedding_dim = 4096
hidden_dim = 4096
intermediate_size = 11008 # FFN intermediate dimension
print(f"Creating test LoRA adapter in {output_dir}")
print(f" vocab_size: {vocab_size}")
print(f" embedding_dim: {embedding_dim}")
print(f" hidden_dim: {hidden_dim}")
print(f" intermediate_size: {intermediate_size}")
print(f" lora_rank: {lora_rank}")
print(f" lora_alpha: {lora_alpha}")
print(f" target_modules: {target_modules}")
print()
os.makedirs(output_dir, exist_ok=True)
# Define weight shapes for each module
module_shapes = {
# Embedding layer: vocab_size -> embedding_dim
"embed_tokens": {
"lora_A": (lora_rank, vocab_size),
"lora_B": (embedding_dim, lora_rank),
},
# LM head: hidden_dim -> vocab_size
"lm_head": {
"lora_A": (lora_rank, hidden_dim),
"lora_B": (vocab_size, lora_rank),
},
# Attention layers: hidden_dim -> hidden_dim
"q_proj": {
"lora_A": (lora_rank, hidden_dim),
"lora_B": (hidden_dim, lora_rank),
},
"k_proj": {
"lora_A": (lora_rank, hidden_dim),
"lora_B": (hidden_dim, lora_rank),
},
"v_proj": {
"lora_A": (lora_rank, hidden_dim),
"lora_B": (hidden_dim, lora_rank),
},
"o_proj": {
"lora_A": (lora_rank, hidden_dim),
"lora_B": (hidden_dim, lora_rank),
},
# FFN layers
"gate_proj": {
"lora_A": (lora_rank, hidden_dim),
"lora_B": (intermediate_size, lora_rank),
},
"up_proj": {
"lora_A": (lora_rank, hidden_dim),
"lora_B": (intermediate_size, lora_rank),
},
"down_proj": {
"lora_A": (lora_rank, intermediate_size),
"lora_B": (hidden_dim, lora_rank),
},
}
# Create LoRA weights
print("Creating LoRA weights with shapes:")
lora_weights = {}
for module in target_modules:
if module not in module_shapes:
print(f"โ ๏ธ Warning: Unknown module '{module}', skipping...")
continue
shapes = module_shapes[module]
# Decide weight name prefix based on module type
if module == "embed_tokens":
prefix = "base_model.model.model.embed_tokens"
elif module == "lm_head":
prefix = "base_model.model.lm_head"
else:
# Other layers (attention, FFN) need to be created for each layer
# Here we create the first layer as an example
prefix = f"base_model.model.model.layers.0.self_attn.{module}" if module in ["q_proj", "k_proj", "v_proj", "o_proj"] else f"base_model.model.model.layers.0.mlp.{module}"
lora_A_shape = shapes["lora_A"]
lora_B_shape = shapes["lora_B"]
print(f" {module}.lora_A: {lora_A_shape}")
print(f" {module}.lora_B: {lora_B_shape}")
if "embed_tokens" in module:
lora_weights[f"{prefix}.lora_embedding_A"] = torch.randn(*lora_A_shape) * 0.01
lora_weights[f"{prefix}.lora_embedding_B"] = torch.randn(*lora_B_shape) * 0.01
# lora_weights[f"{prefix}.lora_embedding_A"] = torch.randn(*lora_A_shape) * 1
# lora_weights[f"{prefix}.lora_embedding_B"] = torch.randn(*lora_B_shape) * 1
else:
lora_weights[f"{prefix}.lora_A.weight"] = torch.randn(*lora_A_shape) * 0.01
lora_weights[f"{prefix}.lora_B.weight"] = torch.randn(*lora_B_shape) * 0.01
# lora_weights[f"{prefix}.lora_A.weight"] = torch.randn(*lora_A_shape) * 1
# lora_weights[f"{prefix}.lora_B.weight"] = torch.randn(*lora_B_shape) * 1
print(lora_weights)
print()
# Verify created weight shapes
print("Verifying created weight shapes:")
for name, weight in lora_weights.items():
print(f" {name}: {weight.shape}")
print()
# Save as safetensors format
try:
from safetensors.torch import save_file
save_file(lora_weights, os.path.join(output_dir, "adapter_model.safetensors"))
print(f"โ
Saved adapter_model.safetensors")
except ImportError:
# If safetensors is not available, use pytorch format
torch.save(lora_weights, os.path.join(output_dir, "adapter_model.bin"))
print(f"โ
Saved adapter_model.bin (safetensors not available)")
# Create adapter_config.json
adapter_config = {
"auto_mapping": None,
"base_model_name_or_path": base_model,
"bias": "none",
"fan_in_fan_out": False,
"inference_mode": True,
"init_lora_weights": True,
"layers_pattern": None,
"layers_to_transform": None,
"lora_alpha": lora_alpha,
"lora_dropout": 0.0,
"modules_to_save": None,
"peft_type": "LORA",
"r": lora_rank,
"revision": None,
"target_modules": target_modules,
"task_type": "CAUSAL_LM"
}
with open(os.path.join(output_dir, "adapter_config.json"), "w") as f:
json.dump(adapter_config, f, indent=2)
print(f"โ
Saved adapter_config.json")
# Create added_tokens.json
if added_tokens is None:
added_tokens = {}
with open(os.path.join(output_dir, "added_tokens.json"), "w") as f:
json.dump(added_tokens, f, indent=2)
print(f"โ
Saved added_tokens.json")
# Create config.json (base model config)
model_config = {
"architectures": ["LlamaForCausalLM"],
"model_type": "llama",
"vocab_size": vocab_size,
"hidden_size": hidden_dim,
"intermediate_size": intermediate_size,
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 32,
"max_position_embeddings": 4096,
"rms_norm_eps": 1e-05,
"rope_theta": 10000.0,
"torch_dtype": "float16",
"transformers_version": "4.36.0"
}
with open(os.path.join(output_dir, "config.json"), "w") as f:
json.dump(model_config, f, indent=2)
print(f"โ
Saved config.json")
#################################
try:
from transformers import AutoTokenizer
print(f"Copying tokenizer files from {base_model}...")
base_tokenizer = AutoTokenizer.from_pretrained(base_model)
base_tokenizer.save_pretrained(output_dir)
print(f"โ
Saved tokenizer files (tokenizer_config.json, tokenizer.json, etc.)")
except Exception as e:
print(f"โ ๏ธ Warning: Could not copy tokenizer files: {e}")
print(f" HuggingFace tests with embed_tokens may fail.")
# #################################
# Create README
readme = f"""# Test LoRA Adapter
This is a test LoRA adapter with customizable target modules.
## Configuration
- Base model: {base_model}
- LoRA rank (r): {lora_rank}
- LoRA alpha: {lora_alpha}
- Target modules: {', '.join(target_modules)}
## Weight Shapes
"""
for module in target_modules:
if module in module_shapes:
shapes = module_shapes[module]
readme += f"- {module}.lora_A: {shapes['lora_A']}\n"
readme += f"- {module}.lora_B: {shapes['lora_B']}\n"
readme += f"""
## Usage with SGLang
python hf_sgl_difference.py \\
--model-path {base_model} \\
--lora-paths {output_dir} \\
--attention-backend triton \\
--lora-backend triton \\
--port 30000 \\
--disable-cuda-graph \\
--output-dir ./logprob_results## Note
This adapter contains randomly initialized weights for testing purposes only.
"""
with open(os.path.join(output_dir, "README.md"), "w") as f:
f.write(readme)
print(f"โ
Saved README.md")
print(f"\n๐ Test LoRA adapter created successfully!")
print(f"\n๐ Output directory: {output_dir}")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description="Create test LoRA adapter with customizable target modules",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Default: generate embed_tokens and lm_head
python create_test_embedding_layer.py
# Generate only attention layers
python create_test_embedding_layer.py --target-modules q_proj k_proj v_proj o_proj
# Generate all supported layers
python create_test_embedding_layer.py --target-modules embed_tokens lm_head q_proj k_proj v_proj o_proj gate_proj up_proj down_proj
# Specify custom parameters
python create_test_embedding_layer.py \\
--output-dir ./my_lora \\
--base-model meta-llama/Llama-2-7b-hf \\
--lora-rank 16 \\
--lora-alpha 32 \\
--target-modules q_proj k_proj v_proj
# Specify added_tokens
python create_test_embedding_layer.py --added-tokens '{"<special>": 32000}'
"""
)
parser.add_argument("--output-dir", type=str, default="./test_embedding_lora",
help="Output directory for the adapter")
parser.add_argument("--base-model", type=str, default="meta-llama/Llama-2-7b-hf",
help="Base model name or path")
parser.add_argument("--lora-rank", type=int, default=8,
help="LoRA rank (r)")
parser.add_argument("--lora-alpha", type=int, default=16,
help="LoRA alpha (scaling factor)")
parser.add_argument("--target-modules", type=str, nargs="+",
default=["embed_tokens", "lm_head", "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
help="Target modules for LoRA. Supported: embed_tokens, lm_head, "
"q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj")
parser.add_argument("--added-tokens", type=str, default=None,
help="JSON string for added_tokens.json (e.g., '{\"<special>\": 32000}'). "
"Default is empty dict")
args = parser.parse_args()
# Parse added_tokens JSON
added_tokens_dict = None
if args.added_tokens:
try:
added_tokens_dict = json.loads(args.added_tokens)
except json.JSONDecodeError as e:
print(f"โ Error parsing added_tokens JSON: {e}")
exit(1)
create_test_embedding_lora(
output_dir=args.output_dir,
base_model=args.base_model,
lora_rank=args.lora_rank,
lora_alpha=args.lora_alpha,
target_modules=args.target_modules,
added_tokens=added_tokens_dict,
)
# # Default: only generate embed_tokens and lm_head
# python create_test_embedding_layer.py
# # Generate only attention layers
# python create_test_embedding_layer.py --target-modules q_proj k_proj v_proj o_proj
# # Generate all layers
# python create_test_embedding_layer.py --target-modules embed_tokens lm_head q_proj k_proj v_proj o_proj gate_proj up_proj down_proj
# # Full customization
# python create_test_embedding_layer.py \
# --output-dir ./my_custom_lora \
# --base-model meta-llama/Llama-2-7b-hf \
# --lora-rank 16 \
# --lora-alpha 32 \
# --target-modules q_proj k_proj v_proj \
# --added-tokens '{"<|im_start|>": 32000, "<|im_end|>": 32001}' |