#!/usr/bin/env python3 """ create_test_embedding_lora.py Create a test LoRA adapter containing specified modules Based on correct dimension specifications from SGLang layers.py """ import json import os import torch from pathlib import Path def create_test_embedding_lora( output_dir="./test_embedding_lora", base_model="meta-llama/Llama-2-7b-hf", lora_rank=8, lora_alpha=16, target_modules=None, added_tokens=None, ): """ Create a test LoRA adapter containing specified modules Args: output_dir: Output directory base_model: Base model name lora_rank: LoRA rank lora_alpha: LoRA alpha target_modules: List of target modules to generate LoRA for, defaults to ["embed_tokens", "lm_head"] added_tokens: Content of added_tokens.json (dictionary), defaults to empty Supported target_modules: - embed_tokens: Word embedding layer - lm_head: Language model head - q_proj, k_proj, v_proj, o_proj: Attention layers - gate_proj, up_proj, down_proj: FFN layers """ # Default: only generate embed_tokens and lm_head if target_modules is None: # target_modules = ["embed_tokens", "lm_head"] target_modules = ["embed_tokens", "lm_head", "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"] # Llama-2-7b configuration vocab_size = 32000 embedding_dim = 4096 hidden_dim = 4096 intermediate_size = 11008 # FFN intermediate dimension print(f"Creating test LoRA adapter in {output_dir}") print(f" vocab_size: {vocab_size}") print(f" embedding_dim: {embedding_dim}") print(f" hidden_dim: {hidden_dim}") print(f" intermediate_size: {intermediate_size}") print(f" lora_rank: {lora_rank}") print(f" lora_alpha: {lora_alpha}") print(f" target_modules: {target_modules}") print() os.makedirs(output_dir, exist_ok=True) # Define weight shapes for each module module_shapes = { # Embedding layer: vocab_size -> embedding_dim "embed_tokens": { "lora_A": (lora_rank, vocab_size), "lora_B": (embedding_dim, lora_rank), }, # LM head: hidden_dim -> vocab_size "lm_head": { "lora_A": (lora_rank, hidden_dim), "lora_B": (vocab_size, lora_rank), }, # Attention layers: hidden_dim -> hidden_dim "q_proj": { "lora_A": (lora_rank, hidden_dim), "lora_B": (hidden_dim, lora_rank), }, "k_proj": { "lora_A": (lora_rank, hidden_dim), "lora_B": (hidden_dim, lora_rank), }, "v_proj": { "lora_A": (lora_rank, hidden_dim), "lora_B": (hidden_dim, lora_rank), }, "o_proj": { "lora_A": (lora_rank, hidden_dim), "lora_B": (hidden_dim, lora_rank), }, # FFN layers "gate_proj": { "lora_A": (lora_rank, hidden_dim), "lora_B": (intermediate_size, lora_rank), }, "up_proj": { "lora_A": (lora_rank, hidden_dim), "lora_B": (intermediate_size, lora_rank), }, "down_proj": { "lora_A": (lora_rank, intermediate_size), "lora_B": (hidden_dim, lora_rank), }, } # Create LoRA weights print("Creating LoRA weights with shapes:") lora_weights = {} for module in target_modules: if module not in module_shapes: print(f"⚠️ Warning: Unknown module '{module}', skipping...") continue shapes = module_shapes[module] # Decide weight name prefix based on module type if module == "embed_tokens": prefix = "base_model.model.model.embed_tokens" elif module == "lm_head": prefix = "base_model.model.lm_head" else: # Other layers (attention, FFN) need to be created for each layer # Here we create the first layer as an example prefix = f"base_model.model.model.layers.0.self_attn.{module}" if module in ["q_proj", "k_proj", "v_proj", "o_proj"] else f"base_model.model.model.layers.0.mlp.{module}" lora_A_shape = shapes["lora_A"] lora_B_shape = shapes["lora_B"] print(f" {module}.lora_A: {lora_A_shape}") print(f" {module}.lora_B: {lora_B_shape}") if "embed_tokens" in module: lora_weights[f"{prefix}.lora_embedding_A"] = torch.randn(*lora_A_shape) * 0.01 lora_weights[f"{prefix}.lora_embedding_B"] = torch.randn(*lora_B_shape) * 0.01 # lora_weights[f"{prefix}.lora_embedding_A"] = torch.randn(*lora_A_shape) * 1 # lora_weights[f"{prefix}.lora_embedding_B"] = torch.randn(*lora_B_shape) * 1 else: lora_weights[f"{prefix}.lora_A.weight"] = torch.randn(*lora_A_shape) * 0.01 lora_weights[f"{prefix}.lora_B.weight"] = torch.randn(*lora_B_shape) * 0.01 # lora_weights[f"{prefix}.lora_A.weight"] = torch.randn(*lora_A_shape) * 1 # lora_weights[f"{prefix}.lora_B.weight"] = torch.randn(*lora_B_shape) * 1 print(lora_weights) print() # Verify created weight shapes print("Verifying created weight shapes:") for name, weight in lora_weights.items(): print(f" {name}: {weight.shape}") print() # Save as safetensors format try: from safetensors.torch import save_file save_file(lora_weights, os.path.join(output_dir, "adapter_model.safetensors")) print(f"✅ Saved adapter_model.safetensors") except ImportError: # If safetensors is not available, use pytorch format torch.save(lora_weights, os.path.join(output_dir, "adapter_model.bin")) print(f"✅ Saved adapter_model.bin (safetensors not available)") # Create adapter_config.json adapter_config = { "auto_mapping": None, "base_model_name_or_path": base_model, "bias": "none", "fan_in_fan_out": False, "inference_mode": True, "init_lora_weights": True, "layers_pattern": None, "layers_to_transform": None, "lora_alpha": lora_alpha, "lora_dropout": 0.0, "modules_to_save": None, "peft_type": "LORA", "r": lora_rank, "revision": None, "target_modules": target_modules, "task_type": "CAUSAL_LM" } with open(os.path.join(output_dir, "adapter_config.json"), "w") as f: json.dump(adapter_config, f, indent=2) print(f"✅ Saved adapter_config.json") # Create added_tokens.json if added_tokens is None: added_tokens = {} with open(os.path.join(output_dir, "added_tokens.json"), "w") as f: json.dump(added_tokens, f, indent=2) print(f"✅ Saved added_tokens.json") # Create config.json (base model config) model_config = { "architectures": ["LlamaForCausalLM"], "model_type": "llama", "vocab_size": vocab_size, "hidden_size": hidden_dim, "intermediate_size": intermediate_size, "num_attention_heads": 32, "num_hidden_layers": 32, "num_key_value_heads": 32, "max_position_embeddings": 4096, "rms_norm_eps": 1e-05, "rope_theta": 10000.0, "torch_dtype": "float16", "transformers_version": "4.36.0" } with open(os.path.join(output_dir, "config.json"), "w") as f: json.dump(model_config, f, indent=2) print(f"✅ Saved config.json") ################################# try: from transformers import AutoTokenizer print(f"Copying tokenizer files from {base_model}...") base_tokenizer = AutoTokenizer.from_pretrained(base_model) base_tokenizer.save_pretrained(output_dir) print(f"✅ Saved tokenizer files (tokenizer_config.json, tokenizer.json, etc.)") except Exception as e: print(f"⚠️ Warning: Could not copy tokenizer files: {e}") print(f" HuggingFace tests with embed_tokens may fail.") # ################################# # Create README readme = f"""# Test LoRA Adapter This is a test LoRA adapter with customizable target modules. ## Configuration - Base model: {base_model} - LoRA rank (r): {lora_rank} - LoRA alpha: {lora_alpha} - Target modules: {', '.join(target_modules)} ## Weight Shapes """ for module in target_modules: if module in module_shapes: shapes = module_shapes[module] readme += f"- {module}.lora_A: {shapes['lora_A']}\n" readme += f"- {module}.lora_B: {shapes['lora_B']}\n" readme += f""" ## Usage with SGLang python hf_sgl_difference.py \\ --model-path {base_model} \\ --lora-paths {output_dir} \\ --attention-backend triton \\ --lora-backend triton \\ --port 30000 \\ --disable-cuda-graph \\ --output-dir ./logprob_results## Note This adapter contains randomly initialized weights for testing purposes only. """ with open(os.path.join(output_dir, "README.md"), "w") as f: f.write(readme) print(f"✅ Saved README.md") print(f"\n🎉 Test LoRA adapter created successfully!") print(f"\n📁 Output directory: {output_dir}") if __name__ == "__main__": import argparse parser = argparse.ArgumentParser( description="Create test LoRA adapter with customizable target modules", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Examples: # Default: generate embed_tokens and lm_head python create_test_embedding_layer.py # Generate only attention layers python create_test_embedding_layer.py --target-modules q_proj k_proj v_proj o_proj # Generate all supported layers python create_test_embedding_layer.py --target-modules embed_tokens lm_head q_proj k_proj v_proj o_proj gate_proj up_proj down_proj # Specify custom parameters python create_test_embedding_layer.py \\ --output-dir ./my_lora \\ --base-model meta-llama/Llama-2-7b-hf \\ --lora-rank 16 \\ --lora-alpha 32 \\ --target-modules q_proj k_proj v_proj # Specify added_tokens python create_test_embedding_layer.py --added-tokens '{"": 32000}' """ ) parser.add_argument("--output-dir", type=str, default="./test_embedding_lora", help="Output directory for the adapter") parser.add_argument("--base-model", type=str, default="meta-llama/Llama-2-7b-hf", help="Base model name or path") parser.add_argument("--lora-rank", type=int, default=8, help="LoRA rank (r)") parser.add_argument("--lora-alpha", type=int, default=16, help="LoRA alpha (scaling factor)") parser.add_argument("--target-modules", type=str, nargs="+", default=["embed_tokens", "lm_head", "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], help="Target modules for LoRA. Supported: embed_tokens, lm_head, " "q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj") parser.add_argument("--added-tokens", type=str, default=None, help="JSON string for added_tokens.json (e.g., '{\"\": 32000}'). " "Default is empty dict") args = parser.parse_args() # Parse added_tokens JSON added_tokens_dict = None if args.added_tokens: try: added_tokens_dict = json.loads(args.added_tokens) except json.JSONDecodeError as e: print(f"❌ Error parsing added_tokens JSON: {e}") exit(1) create_test_embedding_lora( output_dir=args.output_dir, base_model=args.base_model, lora_rank=args.lora_rank, lora_alpha=args.lora_alpha, target_modules=args.target_modules, added_tokens=added_tokens_dict, ) # # Default: only generate embed_tokens and lm_head # python create_test_embedding_layer.py # # Generate only attention layers # python create_test_embedding_layer.py --target-modules q_proj k_proj v_proj o_proj # # Generate all layers # python create_test_embedding_layer.py --target-modules embed_tokens lm_head q_proj k_proj v_proj o_proj gate_proj up_proj down_proj # # Full customization # python create_test_embedding_layer.py \ # --output-dir ./my_custom_lora \ # --base-model meta-llama/Llama-2-7b-hf \ # --lora-rank 16 \ # --lora-alpha 32 \ # --target-modules q_proj k_proj v_proj \ # --added-tokens '{"<|im_start|>": 32000, "<|im_end|>": 32001}'