Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large-instruct. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Data-Lab/multilingual-e5-large-instruct-embedder-tgd")
# Run inference
sentences = [
'сладости без сахара и глютена подойдут для летнего пикника',
'Instruct: Найти похожие продукты на основе деталей\nQuery: Сорбет "Манго- Маракуйя" без доб. сахара сладость, десерт, веганский, без сахара, низкокалорийный, охлаждающий, тропические фрукты, натуральный, диетический, сахарозаменитель, фруктовый, без добавок, здоровье Охлаждающий десерт с сочными тропическими фруктами — это возможность почувствовать вкус лета даже в холодное время года.\nВ основе сорбета — натуральное пюре из манго и маракуйи, никаких ароматизаторов и красителей в составе нет. Как нет и сахара — вместо него добавлен подсластитель мальтит.\nЛакомство подойдёт веганам, постящимся, тем, кто считает калории, и всем ценителям полезных сладостей.',
'Instruct: Найти похожие продукты на основе деталей\nQuery: Филе камбалы с пряными травами и чесноком камбала, морепродукты, филе, пряные травы, чеснок, розмарин, тимьян',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
devTripletEvaluator| Metric | Value |
|---|---|
| cosine_accuracy | 0.9206 |
| dot_accuracy | 0.0794 |
| manhattan_accuracy | 0.9206 |
| euclidean_accuracy | 0.9206 |
| max_accuracy | 0.9206 |
sentence_0, sentence_1, and sentence_2| sentence_0 | sentence_1 | sentence_2 | |
|---|---|---|---|
| type | string | string | string |
| details |
|
|
|
| sentence_0 | sentence_1 | sentence_2 |
|---|---|---|
хурма |
Instruct: Найти похожие продукты на основе деталей |
Instruct: Найти похожие продукты на основе деталей |
жареное мясо |
Instruct: Найти похожие продукты на основе деталей |
Instruct: Найти похожие продукты на основе деталей |
бедро цыпленка бройлера |
Instruct: Найти похожие продукты на основе деталей |
Instruct: Найти похожие продукты на основе деталей |
TripletLoss with these parameters:{
"distance_metric": "TripletDistanceMetric.COSINE",
"triplet_margin": 0.5
}
eval_strategy: stepsper_device_train_batch_size: 4per_device_eval_batch_size: 4fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 4per_device_eval_batch_size: 4per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Truedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss | dev_max_accuracy |
|---|---|---|---|
| 0.3928 | 500 | 0.2635 | - |
| 0.7855 | 1000 | 0.1741 | 0.9144 |
| 1.0 | 1273 | - | 0.9162 |
| 1.1783 | 1500 | 0.151 | - |
| 1.5711 | 2000 | 0.1335 | 0.9250 |
| 1.9639 | 2500 | 0.0977 | - |
| 2.0 | 2546 | - | 0.9162 |
| 2.3566 | 3000 | 0.0916 | 0.9276 |
| 2.7494 | 3500 | 0.0722 | - |
| 3.0 | 3819 | - | 0.9206 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Base model
intfloat/multilingual-e5-large-instruct