Khmer Orthographic Correction System using NLLB
This model is a fine-tuned version of facebook/mbart-large-50 on the khmer-orthography-correction-dataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.1823
- Cer: 0.0473
- Wer: 0.3923
- Bleu: {'score': 60.71026653645501, 'counts': [4985, 558, 166, 33], 'totals': [7537, 805, 267, 63], 'precisions': [66.14037415417275, 69.3167701863354, 62.172284644194754, 52.38095238095238], 'bp': 0.9766598710135985, 'sys_len': 7537, 'ref_len': 7715}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Bleu |
|---|---|---|---|---|---|---|
| 0.9311 | 1.0 | 842 | 0.4968 | 0.1203 | 0.7082 | {'score': 34.801638642481215, 'counts': [2845, 373, 91, 19], 'totals': [7609, 877, 277, 64], 'precisions': [37.389932974109605, 42.53135689851767, 32.851985559566785, 29.6875], 'bp': 0.9861657142243254, 'sys_len': 7609, 'ref_len': 7715} |
| 0.4966 | 2.0 | 1684 | 0.3594 | 0.0898 | 0.6000 | {'score': 44.88058034913873, 'counts': [3561, 447, 122, 24], 'totals': [7557, 825, 269, 63], 'precisions': [47.12187375942835, 54.18181818181818, 45.353159851301115, 38.095238095238095], 'bp': 0.9793092844178501, 'sys_len': 7557, 'ref_len': 7715} |
| 0.3655 | 3.0 | 2526 | 0.2919 | 0.0767 | 0.5307 | {'score': 50.98256581813308, 'counts': [4034, 487, 138, 29], 'totals': [7549, 817, 270, 64], 'precisions': [53.437541396211415, 59.608323133414935, 51.111111111111114, 45.3125], 'bp': 0.9782503427651501, 'sys_len': 7549, 'ref_len': 7715} |
| 0.327 | 4.0 | 3368 | 0.2529 | 0.0657 | 0.4862 | {'score': 53.914915512375295, 'counts': [4343, 511, 146, 30], 'totals': [7544, 812, 268, 64], 'precisions': [57.56892895015907, 62.93103448275862, 54.47761194029851, 46.875], 'bp': 0.977587946673324, 'sys_len': 7544, 'ref_len': 7715} |
| 0.2712 | 5.0 | 4210 | 0.2253 | 0.0591 | 0.4484 | {'score': 55.04966846293549, 'counts': [4604, 528, 152, 30], 'totals': [7547, 815, 272, 66], 'precisions': [61.00437259838346, 64.78527607361963, 55.88235294117647, 45.45454545454545], 'bp': 0.9779854358166019, 'sys_len': 7547, 'ref_len': 7715} |
| 0.2406 | 6.0 | 5052 | 0.2079 | 0.0530 | 0.4289 | {'score': 58.09076687466732, 'counts': [4731, 536, 158, 32], 'totals': [7537, 805, 268, 63], 'precisions': [62.7703330237495, 66.58385093167702, 58.95522388059702, 50.79365079365079], 'bp': 0.9766598710135985, 'sys_len': 7537, 'ref_len': 7715} |
| 0.2243 | 7.0 | 5894 | 0.1962 | 0.0508 | 0.4118 | {'score': 59.13761418304522, 'counts': [4851, 546, 162, 32], 'totals': [7538, 806, 267, 63], 'precisions': [64.35394003714514, 67.74193548387096, 60.674157303370784, 50.79365079365079], 'bp': 0.976792504783367, 'sys_len': 7538, 'ref_len': 7715} |
| 0.2067 | 8.0 | 6736 | 0.1879 | 0.0482 | 0.3997 | {'score': 60.725787252253205, 'counts': [4939, 556, 167, 34], 'totals': [7540, 808, 268, 64], 'precisions': [65.50397877984085, 68.81188118811882, 62.3134328358209, 53.125], 'bp': 0.977057720781772, 'sys_len': 7540, 'ref_len': 7715} |
| 0.1962 | 9.0 | 7578 | 0.1841 | 0.0480 | 0.3939 | {'score': 60.53730944860592, 'counts': [4972, 556, 165, 33], 'totals': [7536, 804, 267, 63], 'precisions': [65.97664543524417, 69.1542288557214, 61.79775280898876, 52.38095238095238], 'bp': 0.9765272200606311, 'sys_len': 7536, 'ref_len': 7715} |
| 0.194 | 10.0 | 8420 | 0.1823 | 0.0473 | 0.3923 | {'score': 60.71026653645501, 'counts': [4985, 558, 166, 33], 'totals': [7537, 805, 267, 63], 'precisions': [66.14037415417275, 69.3167701863354, 62.172284644194754, 52.38095238095238], 'bp': 0.9766598710135985, 'sys_len': 7537, 'ref_len': 7715} |
Framework versions
- Transformers 4.57.2
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for S-Sethisak/KOCS_NLLB
Base model
facebook/nllb-200-distilled-600MEvaluation results
- Wer on khmer-orthography-correction-datasetself-reported0.392
- Bleu on khmer-orthography-correction-datasetself-reported[object Object]