Depth Estimation
fastdepth / README.md
FBAGSTM's picture
Release AI-ModelZoo-4.0.0
d760fca verified
---
license: apache-2.0
pipeline_tag: depth-estimation
---
# FastDepth
## **Use case** : `Depth Estimation`
# Model description
FastDepth is a lightweight encoder-decoder network designed for real-time monocular depth estimation, optimized for edge devices. This implementation is based on model number 146 from [PINTO's model zoo](https://github.com/PINTO0309/PINTO_model_zoo), which builds upon a MobileNetV1 based feature extractor and a fast decoder.
Although the original training dataset is not explicitly provided, it is most likely **NYU Depth V2**, a standard benchmark dataset for indoor depth estimation.
## Network information
| Network Information | Value |
|-------------------------|----------------------------------------------------------------|
| Framework | TensorFlowLite |
| Quantization | int8 |
| Provenance | PINTO Model Zoo #146 |
| Paper | [Link to Paper](https://arxiv.org/pdf/1903.03273)|
The models are quantized using tensorflow lite converter.
## Network inputs / outputs
| Input Shape | Description |
|--------------|-----------------------------------------------------|
| (1, H, W, 3) | Single RGB image (int8) |
| Output Shape | Description |
|---------------|-------------------------------------------------|
| (1, H, W, 1) | Single-channel depth prediction (int8)|
## Recommended platforms
| Platform | Supported | Recommended |
|----------|--------|-----------|
| STM32L0 |[]|[]|
| STM32L4 |[]|[]|
| STM32U5 |[]|[]|
| STM32H7 |[]|[]|
| STM32MP1 |[]|[]|
| STM32MP2 |[x]|[x]|
| STM32N6 |[x]|[x]|
# Performances
## Metrics
Measures are done with default STEdgeAI Core version configuration with enabled input / output allocated option.
### Reference **NPU** memory footprint
| Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STEdgeAI Core version |
|------------|---------------|----------|------------|-----------|--------------|--------------|---------------|-----------------------|
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/depth_estimation/fastdepth/Public_pretrainedmodel_public_dataset/nyu_depthv2/fastdepth_224/fastdepth_224_int8.tflite) | NYU depth v2 | Int8 | 224x224x3 | STM32N6 | 2728.5 | 0 | 1347.97 | 3.0.0 |
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/depth_estimation/fastdepth/Public_pretrainedmodel_public_dataset/nyu_depthv2/fastdepth_256/fastdepth_256_int8.tflite) | NYU depth v2 | Int8 | 256x256x3 | STM32N6 | 2688 | 1024 | 1354.09 | 3.0.0 |
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/depth_estimation/fastdepth/Public_pretrainedmodel_public_dataset/nyu_depthv2/fastdepth_320/fastdepth_320_int8.tflite) | NYU depth v2 | Int8 | 320x320x3 | STM32N6 | 2800 | 2800 | 1376.78 | 3.0.0 |
### Reference **NPU** inference time
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
|------------|---------------|----------|------------|------------------|------------------|---------------------|-------------|-------------------------|
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/depth_estimation/fastdepth/Public_pretrainedmodel_public_dataset/nyu_depthv2/fastdepth_224/fastdepth_224_int8.tflite) | NYU depth v2 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 24.49 | 40.83 | 3.0.0 |
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/depth_estimation/fastdepth/Public_pretrainedmodel_public_dataset/nyu_depthv2/fastdepth_256/fastdepth_256_int8.tflite) | NYU depth v2 | Int8 | 256x256x3 | STM32N6570-DK | NPU/MCU | 75.01 | 13.33 | 3.0.0 |
| [Fast Depth](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/depth_estimation/fastdepth/Public_pretrainedmodel_public_dataset/nyu_depthv2/fastdepth_320/fastdepth_320_int8.tflite) | NYU depth v2 | Int8 | 320x320x3 | STM32N6570-DK | NPU/MCU | 477.93 | 2.09 | 3.0.0 |
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)