|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- text-retrieval |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- semantic-search |
|
|
- amharic |
|
|
- text-embedding-inference |
|
|
- transformers |
|
|
|
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
license: mit |
|
|
metrics: |
|
|
- cosine_accuracy |
|
|
model-index: |
|
|
- name: SentenceTransformer |
|
|
results: |
|
|
- task: |
|
|
type: triplet |
|
|
name: Triplet |
|
|
dataset: |
|
|
name: TestTripletEvaluator |
|
|
type: TestTripletEvaluator |
|
|
metrics: |
|
|
- type: cosine_accuracy |
|
|
value: 0.875 |
|
|
name: Cosine Accuracy |
|
|
--- |
|
|
|
|
|
# SentenceTransformer Fine-Tuned for Amharic Retrieval |
|
|
|
|
|
This model is a [sentence-transformers](https://www.sbert.net) model finetuned on Amharic QA triplets. It maps sentences and paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base Model:** `sentence-transformers/paraphrase-xlm-r-multilingual-v1` |
|
|
- **Training Task:** Triplet loss with Matryoshka loss |
|
|
- **Language:** Amharic |
|
|
- **Maximum Sequence Length:** 128 tokens |
|
|
- **Output Dimensionality:** 768 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
|
|
|
## Training Overview |
|
|
|
|
|
- **Training Data:** Custom Amharic QA triplets (with positive and negative examples) |
|
|
- **Training Strategy:** |
|
|
The model was finetuned using a combination of triplet loss and a Matryoshka loss, with evaluation performed using a `TripletEvaluator`. |
|
|
- **Hyperparameters:** |
|
|
- Epochs: 3 |
|
|
- Batch Size: 16 |
|
|
- Learning Rate: 1e-6 |
|
|
- Warmup Ratio: 0.08 |
|
|
- Weight Decay: 0.05 |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
The model was evaluated on a held-out test set using cosine similarity as the metric: |
|
|
|
|
|
| Metric | Value | |
|
|
|---------------------|--------| |
|
|
| **Cosine Accuracy** | 0.875 | |
|
|
|
|
|
## Usage |
|
|
|
|
|
To use the model in your own project: |
|
|
|
|
|
1. **Install Sentence Transformers:** |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
2. **Load the Model:** |
|
|
|
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
model = SentenceTransformer("abdulmunimjemal/xlm-r-retrieval-am-v5") |
|
|
sentences = [ |
|
|
"α°αα αα α ααα΅ ααα αα?", |
|
|
"α°αα α°αα«α ααα α ααα’" , |
|
|
"α₯α αα³ α₯ααα« α ααα’" , |
|
|
"α£αα αα α ααα΅ ααα αα?", |
|
|
"α α¨α α αα΅α ααͺα« α«α ααα’" |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) # Expected output: (5, 768) |
|
|
``` |
|
|
|
|
|
3. **Compute Similarity:** |
|
|
|
|
|
```python |
|
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
similarities = cosine_similarity(embeddings, embeddings) |
|
|
print(similarities.shape) # Expected output: (5, 5) |
|
|
``` |
|
|
|
|
|
## Model Architecture |
|
|
|
|
|
Below is an outline of the model architecture: |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True, ...}) |
|
|
) |
|
|
``` |
|
|
|
|
|
## Training Environment |
|
|
|
|
|
- **Python:** 3.11.11 |
|
|
- **Sentence Transformers:** 3.3.1 |
|
|
- **Transformers:** 4.47.1 |
|
|
- **PyTorch:** 2.5.1+cu124 |
|
|
- **Accelerate:** 1.2.1 |
|
|
- **Datasets:** 3.2.0 |
|
|
- **Tokenizers:** 0.21.0 |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this model in your research, please cite it appropriately. |
|
|
|
|
|
```bibtex |
|
|
@misc{your_model, |
|
|
title = {SentenceTransformer Fine-Tuned for Amharic Retrieval}, |
|
|
author = {Abdulmunim J. Jemal}, |
|
|
year = {2025}, |
|
|
howpublished = {Hugging Face Model Hub, \url{https://huggingface.co/abdulmunimjemal/xlm-r-retrieval-am-v1}} |
|
|
} |
|
|
``` |