Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/FaLabseV13p1")
# Run inference
sentences = [
'پیش نیازهای ریاضی قبل از شروع به درک قضایای ناقص بودن گودل چیست؟',
'پیش نیازهای ریاضی برای درک صحیح از قضایای ناقص گودل چیست؟',
'به نظر شما ما می توانیم برای بهبود بهترین سیستم آموزش ایالات متحده انجام دهیم؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
چگونه می توانم ترافیک کشورهای خاص در سایت خود را حذف کنم؟ |
چگونه می توانید ترافیک یک کشور خاص را به سمت وب سایت خود مسدود کنید؟ |
آیا پیوستن به مرکز مربیگری برای پاک کردن JEE ضروری است؟ |
آیا مربیگری برای موفقیت در JEE Advanced لازم است؟ |
چند نکته برای مرحله 1 USMLE چیست؟ |
چقدر باید برای مرحله 1 USMLE مطالعه کنم؟ |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 32learning_rate: 2e-05weight_decay: 0.01num_train_epochs: 1batch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss |
|---|---|---|
| 0.0292 | 100 | 0.0583 |
| 0.0583 | 200 | 0.0429 |
| 0.0875 | 300 | 0.0421 |
| 0.1167 | 400 | 0.0451 |
| 0.1459 | 500 | 0.0536 |
| 0.1750 | 600 | 0.0496 |
| 0.2042 | 700 | 0.0404 |
| 0.2334 | 800 | 0.0372 |
| 0.2625 | 900 | 0.0436 |
| 0.2917 | 1000 | 0.0458 |
| 0.3209 | 1100 | 0.0433 |
| 0.3501 | 1200 | 0.0351 |
| 0.3792 | 1300 | 0.034 |
| 0.4084 | 1400 | 0.031 |
| 0.4376 | 1500 | 0.0341 |
| 0.4667 | 1600 | 0.034 |
| 0.4959 | 1700 | 0.0369 |
| 0.5251 | 1800 | 0.0393 |
| 0.5543 | 1900 | 0.0415 |
| 0.5834 | 2000 | 0.0435 |
| 0.6126 | 2100 | 0.0379 |
| 0.6418 | 2200 | 0.0353 |
| 0.6709 | 2300 | 0.0369 |
| 0.7001 | 2400 | 0.0414 |
| 0.7293 | 2500 | 0.0339 |
| 0.7585 | 2600 | 0.0379 |
| 0.7876 | 2700 | 0.0374 |
| 0.8168 | 2800 | 0.0332 |
| 0.8460 | 2900 | 0.0379 |
| 0.8751 | 3000 | 0.0479 |
| 0.9043 | 3100 | 0.0333 |
| 0.9335 | 3200 | 0.0317 |
| 0.9627 | 3300 | 0.0245 |
| 0.9918 | 3400 | 0.0411 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}