Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/multilingual-e5-base-Fa-v3")
# Run inference
sentences = [
'معنی و هدف زندگی چیست؟',
'معنی دقیق زندگی چیست؟',
'مراکز خرید در آینده چگونه خواهد بود؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
طالع بینی: من یک ماه و کلاه درپوش خورشید است ... این در مورد من چه می گوید؟ |
من یک برج سه گانه (خورشید ، ماه و صعود در برجستگی) هستم که این در مورد من چه می گوید؟ |
چگونه می توانم یک زمین شناس خوب باشم؟ |
چه کاری باید انجام دهم تا یک زمین شناس عالی باشم؟ |
چگونه می توانم نظرات YouTube خود را بخوانم و پیدا کنم؟ |
چگونه می توانم تمام نظرات YouTube خود را ببینم؟ |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 64learning_rate: 2e-05weight_decay: 0.01batch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss |
|---|---|---|
| 0.0770 | 100 | 0.2123 |
| 0.1541 | 200 | 0.1124 |
| 0.2311 | 300 | 0.0804 |
| 0.3082 | 400 | 0.1067 |
| 0.3852 | 500 | 0.0981 |
| 0.4622 | 600 | 0.0936 |
| 0.5393 | 700 | 0.0957 |
| 0.6163 | 800 | 0.0848 |
| 0.6934 | 900 | 0.0924 |
| 0.7704 | 1000 | 0.0885 |
| 0.8475 | 1100 | 0.0852 |
| 0.9245 | 1200 | 0.1289 |
| 1.0008 | 1300 | 1.0585 |
| 1.0778 | 1400 | 0.0738 |
| 1.1549 | 1500 | 0.0677 |
| 1.2319 | 1600 | 0.0524 |
| 1.3089 | 1700 | 0.0713 |
| 1.3860 | 1800 | 0.0629 |
| 1.4630 | 1900 | 0.0634 |
| 1.5401 | 2000 | 0.0654 |
| 1.6171 | 2100 | 0.0596 |
| 1.6941 | 2200 | 0.0669 |
| 1.7712 | 2300 | 0.0633 |
| 1.8482 | 2400 | 0.0634 |
| 1.9253 | 2500 | 0.0968 |
| 2.0015 | 2600 | 0.9084 |
| 2.0786 | 2700 | 0.0582 |
| 2.1556 | 2800 | 0.0522 |
| 2.2327 | 2900 | 0.0438 |
| 2.3097 | 3000 | 0.0586 |
| 2.3867 | 3100 | 0.0514 |
| 2.4638 | 3200 | 0.0512 |
| 2.5408 | 3300 | 0.0537 |
| 2.6179 | 3400 | 0.0513 |
| 2.6949 | 3500 | 0.0561 |
| 2.7720 | 3600 | 0.0515 |
| 2.8490 | 3700 | 0.0549 |
| 2.9260 | 3800 | 0.0873 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
intfloat/multilingual-e5-base