Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/newfa_e5base")
# Run inference
sentences = [
'من می خواهم آماده سازی برای امتحان IAS را شروع کنم ، چگونه باید ادامه دهم؟',
'چگونه می توانم آماده سازی برای آزمون UPSC را شروع کنم؟',
'یک کوهنورد یک صخره را می\u200cگیرد و مرد دیگر یک دیوار را با طناب می\u200cبندد',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
خانواده در حال تماشای یک پسر کوچک است که به توپ بیسبال ضربه میزند |
خانواده در حال تماشای پسری است که به توپ بیسبال ضربه میزند |
چرا هند باید محصولات چین را خریداری کند اگر آنها محصولات ما را خریداری نکنند؟ و بیشتر از آن در برابر هند است از هر جنبه ای. آیا ما محصولات چینی را تحریم می کنیم؟ |
اگر چین خیلی مخالف هند است ، چرا هندی ها از خرید محصولات چینی دست نمی کشند؟ |
چه تفاوتی بین همه جانبه و قادر مطلق وجود دارد؟ |
تفاوت های بین همه چیز و قادر مطلق چیست؟ |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 32learning_rate: 2e-05weight_decay: 0.01num_train_epochs: 1batch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss |
|---|---|---|
| 0.0253 | 100 | 0.1051 |
| 0.0506 | 200 | 0.0588 |
| 0.0759 | 300 | 0.0628 |
| 0.1012 | 400 | 0.0388 |
| 0.1266 | 500 | 0.0464 |
| 0.1519 | 600 | 0.0437 |
| 0.1772 | 700 | 0.0456 |
| 0.2025 | 800 | 0.0411 |
| 0.2278 | 900 | 0.0425 |
| 0.2531 | 1000 | 0.0472 |
| 0.2784 | 1100 | 0.05 |
| 0.3037 | 1200 | 0.0381 |
| 0.3290 | 1300 | 0.0458 |
| 0.3543 | 1400 | 0.0387 |
| 0.3797 | 1500 | 0.0472 |
| 0.4050 | 1600 | 0.052 |
| 0.4303 | 1700 | 0.0432 |
| 0.4556 | 1800 | 0.0415 |
| 0.4809 | 1900 | 0.0311 |
| 0.5062 | 2000 | 0.0375 |
| 0.5315 | 2100 | 0.0436 |
| 0.5568 | 2200 | 0.0392 |
| 0.5821 | 2300 | 0.0338 |
| 0.6074 | 2400 | 0.033 |
| 0.6328 | 2500 | 0.0389 |
| 0.6581 | 2600 | 0.032 |
| 0.6834 | 2700 | 0.0355 |
| 0.7087 | 2800 | 0.0378 |
| 0.7340 | 2900 | 0.0372 |
| 0.7593 | 3000 | 0.0426 |
| 0.7846 | 3100 | 0.0396 |
| 0.8099 | 3200 | 0.0382 |
| 0.8352 | 3300 | 0.0368 |
| 0.8605 | 3400 | 0.0446 |
| 0.8859 | 3500 | 0.0342 |
| 0.9112 | 3600 | 0.0367 |
| 0.9365 | 3700 | 0.0343 |
| 0.9618 | 3800 | 0.0408 |
| 0.9871 | 3900 | 0.0315 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
intfloat/multilingual-e5-base