Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/newfa_e5base2")
# Run inference
sentences = [
'مرزهای صفحه چیست؟برخی از انواع چیست؟',
'مرزهای صفحه چیست؟',
'اتانول چند ایزومر دارد؟',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
گاو یونجه می خورد |
گاو در حال چریدن است |
ماشینی به شکلی خطرناک از روی دختری میپرد. |
دختر با بیاحتیاطی روی ماشین میپرد. |
چگونه می توانم کارتهای هدیه iTunes رایگان را در هند دریافت کنم؟ |
چگونه می توانم کارتهای هدیه iTunes رایگان دریافت کنم؟ |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 32learning_rate: 2e-05weight_decay: 0.01batch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss |
|---|---|---|
| 0.0224 | 100 | 0.0821 |
| 0.0448 | 200 | 0.0455 |
| 0.0671 | 300 | 0.0408 |
| 0.0895 | 400 | 0.0461 |
| 0.1119 | 500 | 0.0418 |
| 0.1343 | 600 | 0.0449 |
| 0.1567 | 700 | 0.0314 |
| 0.1791 | 800 | 0.0252 |
| 0.2014 | 900 | 0.0254 |
| 0.2238 | 1000 | 0.0341 |
| 0.2462 | 1100 | 0.0239 |
| 0.2686 | 1200 | 0.0308 |
| 0.2910 | 1300 | 0.0415 |
| 0.3133 | 1400 | 0.0386 |
| 0.3357 | 1500 | 0.027 |
| 0.3581 | 1600 | 0.0369 |
| 0.3805 | 1700 | 0.0346 |
| 0.4029 | 1800 | 0.0301 |
| 0.4252 | 1900 | 0.03 |
| 0.4476 | 2000 | 0.0179 |
| 0.4700 | 2100 | 0.035 |
| 0.4924 | 2200 | 0.0327 |
| 0.5148 | 2300 | 0.033 |
| 0.5372 | 2400 | 0.0272 |
| 0.5595 | 2500 | 0.0318 |
| 0.5819 | 2600 | 0.025 |
| 0.6043 | 2700 | 0.023 |
| 0.6267 | 2800 | 0.0294 |
| 0.6491 | 2900 | 0.0337 |
| 0.6714 | 3000 | 0.0274 |
| 0.6938 | 3100 | 0.0223 |
| 0.7162 | 3200 | 0.0384 |
| 0.7386 | 3300 | 0.0217 |
| 0.7610 | 3400 | 0.032 |
| 0.7833 | 3500 | 0.0309 |
| 0.8057 | 3600 | 0.024 |
| 0.8281 | 3700 | 0.0273 |
| 0.8505 | 3800 | 0.0245 |
| 0.8729 | 3900 | 0.0268 |
| 0.8953 | 4000 | 0.0322 |
| 0.9176 | 4100 | 0.0271 |
| 0.9400 | 4200 | 0.0316 |
| 0.9624 | 4300 | 0.0179 |
| 0.9848 | 4400 | 0.0294 |
| 1.0072 | 4500 | 0.0283 |
| 1.0295 | 4600 | 0.0171 |
| 1.0519 | 4700 | 0.017 |
| 1.0743 | 4800 | 0.0197 |
| 1.0967 | 4900 | 0.0215 |
| 1.1191 | 5000 | 0.02 |
| 1.1415 | 5100 | 0.0144 |
| 1.1638 | 5200 | 0.015 |
| 1.1862 | 5300 | 0.0084 |
| 1.2086 | 5400 | 0.0115 |
| 1.2310 | 5500 | 0.0143 |
| 1.2534 | 5600 | 0.0129 |
| 1.2757 | 5700 | 0.0165 |
| 1.2981 | 5800 | 0.0168 |
| 1.3205 | 5900 | 0.0233 |
| 1.3429 | 6000 | 0.0156 |
| 1.3653 | 6100 | 0.0207 |
| 1.3876 | 6200 | 0.0149 |
| 1.4100 | 6300 | 0.0134 |
| 1.4324 | 6400 | 0.0108 |
| 1.4548 | 6500 | 0.0118 |
| 1.4772 | 6600 | 0.0173 |
| 1.4996 | 6700 | 0.0171 |
| 1.5219 | 6800 | 0.0168 |
| 1.5443 | 6900 | 0.0144 |
| 1.5667 | 7000 | 0.0111 |
| 1.5891 | 7100 | 0.0117 |
| 1.6115 | 7200 | 0.0122 |
| 1.6338 | 7300 | 0.0143 |
| 1.6562 | 7400 | 0.0151 |
| 1.6786 | 7500 | 0.0152 |
| 1.7010 | 7600 | 0.012 |
| 1.7234 | 7700 | 0.0177 |
| 1.7457 | 7800 | 0.0172 |
| 1.7681 | 7900 | 0.016 |
| 1.7905 | 8000 | 0.0141 |
| 1.8129 | 8100 | 0.0112 |
| 1.8353 | 8200 | 0.011 |
| 1.8577 | 8300 | 0.0132 |
| 1.8800 | 8400 | 0.0127 |
| 1.9024 | 8500 | 0.0188 |
| 1.9248 | 8600 | 0.0196 |
| 1.9472 | 8700 | 0.0106 |
| 1.9696 | 8800 | 0.0108 |
| 1.9919 | 8900 | 0.0172 |
| 2.0143 | 9000 | 0.0116 |
| 2.0367 | 9100 | 0.0089 |
| 2.0591 | 9200 | 0.0096 |
| 2.0815 | 9300 | 0.0142 |
| 2.1038 | 9400 | 0.0112 |
| 2.1262 | 9500 | 0.0103 |
| 2.1486 | 9600 | 0.0077 |
| 2.1710 | 9700 | 0.0082 |
| 2.1934 | 9800 | 0.0066 |
| 2.2158 | 9900 | 0.0106 |
| 2.2381 | 10000 | 0.0072 |
| 2.2605 | 10100 | 0.0085 |
| 2.2829 | 10200 | 0.0085 |
| 2.3053 | 10300 | 0.015 |
| 2.3277 | 10400 | 0.0113 |
| 2.3500 | 10500 | 0.0118 |
| 2.3724 | 10600 | 0.0123 |
| 2.3948 | 10700 | 0.0071 |
| 2.4172 | 10800 | 0.0087 |
| 2.4396 | 10900 | 0.0056 |
| 2.4620 | 11000 | 0.0091 |
| 2.4843 | 11100 | 0.0116 |
| 2.5067 | 11200 | 0.0123 |
| 2.5291 | 11300 | 0.0108 |
| 2.5515 | 11400 | 0.0078 |
| 2.5739 | 11500 | 0.0072 |
| 2.5962 | 11600 | 0.0084 |
| 2.6186 | 11700 | 0.0066 |
| 2.6410 | 11800 | 0.0115 |
| 2.6634 | 11900 | 0.0088 |
| 2.6858 | 12000 | 0.008 |
| 2.7081 | 12100 | 0.0095 |
| 2.7305 | 12200 | 0.0108 |
| 2.7529 | 12300 | 0.0113 |
| 2.7753 | 12400 | 0.0086 |
| 2.7977 | 12500 | 0.0096 |
| 2.8201 | 12600 | 0.0093 |
| 2.8424 | 12700 | 0.0076 |
| 2.8648 | 12800 | 0.006 |
| 2.8872 | 12900 | 0.0124 |
| 2.9096 | 13000 | 0.0131 |
| 2.9320 | 13100 | 0.0103 |
| 2.9543 | 13200 | 0.0063 |
| 2.9767 | 13300 | 0.0067 |
| 2.9991 | 13400 | 0.0117 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
intfloat/multilingual-e5-base