GATE-VLAP-datasets / README.md
asenppopov's picture
Add dataset README with TAR format documentation
e6571d9 verified
|
raw
history blame
10.7 kB
metadata
task_categories:
  - reinforcement-learning
  - robotics
tags:
  - robotics
  - libero
  - manipulation
  - semantic-action-chunking
  - vision-language
  - imitation-learning
size_categories:
  - 100K<n<1M

GATE-VLAP Datasets

Grounded Action Trajectory Embeddings with Vision-Language Action Planning

This repository contains preprocessed datasets from the LIBERO benchmark suite, specifically designed for training vision-language-action models with semantic action segmentation.

Why Raw Format?

We provide datasets in raw PNG + JSON format rather than pre-packaged TAR/WebDataset files for several important reasons:

Advantages of Raw Format

  1. Easy Inspection: Browse and visualize individual demonstrations directly on HuggingFace
  2. Maximum Flexibility:
    • Load with any framework (PyTorch, TensorFlow, JAX)
    • Convert to your preferred format (TAR, RLDS, LeRobot, custom)
    • Cherry-pick specific demos or subtasks
  3. Better Debugging:
    • Inspect problematic frames without extracting archives
    • Verify data quality visually
    • Check action sequences frame-by-frame
  4. Transparent: See exact file structure and metadata organization
  5. Version Control: Git LFS handles individual files better than large archives

Converting to TAR/WebDataset

If you need TAR format for efficient streaming during training, you can easily convert:

import webdataset as wds
from pathlib import Path
import json
from PIL import Image

def convert_to_tar(input_dir, output_pattern, maxcount=1000):
    """
    Convert raw PNG+JSON format to WebDataset TAR shards.
    
    Args:
        input_dir: Path to subtask directory (e.g., "libero_10/pick_up_the_black_bowl")
        output_pattern: Output pattern (e.g., "output/shard-%06d.tar")
        maxcount: Max samples per shard (default: 1000 frames per TAR)
    """
    with wds.ShardWriter(output_pattern, maxcount=maxcount) as sink:
        subtask_path = Path(input_dir)
        
        # Iterate through demos
        for demo_dir in sorted(subtask_path.iterdir()):
            if not demo_dir.is_dir():
                continue
                
            # Iterate through timesteps
            for json_file in sorted(demo_dir.glob("*.json")):
                png_file = json_file.with_suffix(".png")
                
                if not png_file.exists():
                    continue
                
                # Load data
                with open(json_file) as f:
                    data = json.load(f)
                
                # Create WebDataset sample
                sample = {
                    "__key__": f"{demo_dir.name}/{json_file.stem}",
                    "png": Image.open(png_file),
                    "json": data,
                    "action.pyd": data["action"],  # NumPy-compatible format
                    "robot_state.pyd": data["robot_state"],
                }
                
                sink.write(sample)

# Example: Convert a subtask to TAR
convert_to_tar(
    "libero_10/pick_up_the_black_bowl",
    "tar_output/pick_up_the_black_bowl-%06d.tar"
)

Loading Raw Data

from pathlib import Path
import json
from PIL import Image
import numpy as np

def load_demo(demo_dir):
    """Load a single demonstration."""
    frames = []
    demo_path = Path(demo_dir)
    
    for json_file in sorted(demo_path.glob("*.json")):
        # Load metadata
        with open(json_file) as f:
            data = json.load(f)
        
        # Load image
        png_file = json_file.with_suffix(".png")
        data["image"] = np.array(Image.open(png_file))
        
        frames.append(data)
    
    return frames

# Load a specific demo
demo = load_demo("libero_10/pick_up_the_black_bowl/demo_0")
print(f"Demo length: {len(demo)} frames")
print(f"Action shape: {demo[0]['action'].shape}")

Datasets Included

LIBERO-10 (Long-Horizon Tasks)

  • Task Type: 10 complex, long-horizon manipulation tasks
  • Segmentation Method: Semantic Action Chunking using Gemini Vision API
  • Demos: 1,354 demonstrations across 29 subtasks
  • Frames: 103,650 total frames
  • Subtasks: Tasks are automatically segmented into atomic subtasks

Example Tasks:

  • pick_up_the_black_bowl → Segmented into pick and place subtasks
  • close_the_drawer → Segmented into approach, grasp, close subtasks
  • put_the_bowl_in_the_drawer → Multi-step pick, open, place, close sequence

LIBERO-Object (Object Manipulation)

  • Task Type: 10 object-centric manipulation tasks
  • Segmentation Method: Rule-based gripper detection with stop signals
  • Demos: 875 demonstrations across 20 subtasks
  • Frames: 66,334 total frames
  • Subtasks: Pick and place variations for 10 different objects

Example Tasks:

  • pick_up_the_alphabet_soup → Approach, grasp, lift
  • place_the_alphabet_soup_on_the_basket → Move, position, place, release

📁 Dataset Structure

gate-institute/GATE-VLAP-datasets/
├── libero_10/                          # Long-horizon tasks
│   ├── close_the_drawer/
│   │   ├── demo_0/
│   │   │   ├── demo_0_timestep_0000.png  # RGB observation (128x128)
│   │   │   ├── demo_0_timestep_0000.json # Action + metadata
│   │   │   ├── demo_0_timestep_0001.png
│   │   │   ├── demo_0_timestep_0001.json
│   │   │   └── ...
│   │   ├── demo_1/
│   │   └── ...
│   ├── pick_up_the_black_bowl/
│   └── ... (29 subtasks total)
│
├── libero_object/                      # Object manipulation tasks
│   ├── pick_up_the_alphabet_soup/
│   │   ├── demo_0/
│   │   │   ├── demo_0_timestep_0000.png
│   │   │   ├── demo_0_timestep_0000.json
│   │   │   └── ...
│   │   └── ...
│   └── ... (20 subtasks total)
│
└── metadata/                           # Dataset statistics & segmentation
    ├── libero_10_complete_stats.json
    ├── libero_10_all_segments.json
    ├── libero_object_complete_stats.json
    └── libero_object_all_segments.json

Data Format

JSON Metadata (per timestep)

Each .json file contains:

{
  "action": [0.1, -0.2, 0.0, 0.0, 0.0, 0.0, 1.0],  // 7-DOF action (xyz, rpy, gripper)
  "robot_state": [...],                             // Joint positions, velocities
  "demo_id": "demo_0",
  "timestep": 42,
  "subtask": "pick_up_the_black_bowl",
  "parent_task": "LIBERO_10",
  "is_stop_signal": false                           // Segment boundary marker
}

Action Space

  • Dimensions: 7-DOF
    • [0:3]: End-effector position delta (x, y, z)
    • [3:6]: End-effector orientation delta (roll, pitch, yaw)
    • [6]: Gripper action (0.0 = close, 1.0 = open)
  • Range: Normalized to [-1, 1]
  • Control: Delta actions (relative to current pose)

Image Format

  • Resolution: 128×128 pixels
  • Channels: RGB (3 channels)
  • Format: PNG (lossless compression)
  • Camera: Front-facing agentview camera

Metadata Files Explained

1. libero_10_complete_stats.json

Purpose: Overview statistics for the entire LIBERO-10 dataset

{
  "dataset": "LIBERO-10",
  "total_parent_tasks": 10,
  "total_subtasks": 29,
  "total_demos": 1354,
  "total_frames": 103650,
  "parent_task_mapping": {
    "LIBERO_10": {
      "frames": 103650,
      "demos": 1354,
      "subtasks": ["pick_up_the_black_bowl", "close_the_drawer", ...]
    }
  },
  "subtask_details": {
    "pick_up_the_black_bowl": {
      "demo_count": 48,
      "frame_count": 3516,
      "avg_frames_per_demo": 73.25,
      "parent_task": "LIBERO_10"
    },
    ...
  }
}

Use Case:

  • Understand dataset composition
  • Plan training splits
  • Check demo/frame distribution across tasks

2. libero_10_all_segments.json

Purpose: Detailed segmentation metadata for each demonstration

{
  "demo_0": {
    "subtask": "pick_up_the_black_bowl",
    "parent_task": "LIBERO_10",
    "segments": [
      {
        "segment_id": 0,
        "start_frame": 0,
        "end_frame": 35,
        "description": "Approach the black bowl",
        "action_type": "reach"
      },
      {
        "segment_id": 1,
        "start_frame": 36,
        "end_frame": 45,
        "description": "Grasp the black bowl",
        "action_type": "grasp"
      },
      ...
    ],
    "segmentation_method": "gemini_vision_api",
    "total_segments": 3
  },
  ...
}

Use Case:

  • Train with semantic action chunks
  • Implement hierarchical policies
  • Analyze action primitives
  • Filter by segment type

3. libero_object_complete_stats.json

Purpose: Statistics for LIBERO-Object dataset (same structure as LIBERO-10)

Key Differences:

  • Fewer, simpler subtasks (20 vs 29)
  • Object-centric task naming
  • Rule-based segmentation instead of vision-based

4. libero_object_all_segments.json

Purpose: Segmentation for LIBERO-Object demonstrations

Segmentation Method: Rule-based gripper detection

  • Segments identified by gripper state changes
  • Stop signals mark task completion
  • More consistent segment boundaries than vision-based

Citation

If you use this dataset, please cite:

@article{gateVLAP2024,
  title={GATE-VLAP: Grounded Action Trajectory Embeddings with Vision-Language Action Planning},
  author={[Your Name]},
  journal={arXiv preprint arXiv:XXXX.XXXXX},
  year={2024}
}

@inproceedings{liu2023libero,
  title={LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning},
  author={Liu, Bo and Zhu, Yifeng and Gao, Chongkai and Feng, Yihao and Liu, Qiang and Zhu, Yuke and Stone, Peter},
  booktitle={Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year={2023}
}

Related Resources

Acknowledgments

  • LIBERO Benchmark: Original dataset by Liu et al. (2023)
  • Segmentation: Gemini Vision API for LIBERO-10 semantic chunking
  • Infrastructure: Processed on GATE Institute infrastructure

Contact

For questions or issues, please open an issue on our GitHub repository or contact [your-email@example.com].


Dataset Version: 1.0
Last Updated: December 2025
Maintainer: GATE Institute