The Dataset Viewer has been disabled on this dataset.
Marimo UV Scripts
Marimo notebooks that work as both interactive tutorials and batch scripts.
What is this?
Marimo notebooks are pure Python files that can be:
- Edited interactively with a reactive notebook interface
- Run as scripts with
uv run- same as any UV script
This makes them perfect for tutorials and educational content where you want users to explore step-by-step, but also run the whole thing as a batch job.
Available Scripts
| Script | Description |
|---|---|
getting-started.py |
Introduction to UV scripts and HF datasets |
train-image-classifier.py |
Fine-tune a Vision Transformer on image classification |
_template.py |
Minimal template for creating your own notebooks |
Usage
Run as a script
# Get dataset info
uv run https://huggingface.co/datasets/uv-scripts/marimo/raw/main/getting-started.py --dataset squad
# Train an image classifier
uv run https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \
--dataset beans \
--epochs 3 \
--output-repo your-username/beans-vit
Run interactively
# Clone and edit locally
git clone https://huggingface.co/datasets/uv-scripts/marimo
cd marimo
# Open in marimo editor (--sandbox auto-installs dependencies)
uvx marimo edit --sandbox getting-started.py
uvx marimo edit --sandbox train-image-classifier.py
Run on HF Jobs (GPU)
# Train image classifier with GPU
hf jobs uv run --flavor l4x1 --secrets HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/marimo/raw/main/train-image-classifier.py \
-- --dataset beans --output-repo your-username/beans-vit --epochs 5 --push-to-hub
Why Marimo?
- Reactive: Cells automatically re-run when dependencies change
- Pure Python: No JSON, git-friendly, readable as plain code
- Self-contained: Inline dependencies via PEP 723 metadata
- Dual-mode: Same file works as notebook and script
Create Your Own Marimo UV Script
Use _template.py as a starting point:
# Clone and copy the template
git clone https://huggingface.co/datasets/uv-scripts/marimo
cp marimo/_template.py my-notebook.py
# Edit interactively
uvx marimo edit --sandbox my-notebook.py
# Test as script
uv run my-notebook.py --help
Recipes
Add explanation (notebook only)
mo.md("""
## This is a heading
This text explains what's happening. Only shows in interactive mode.
""")
Show output in both modes
# print() shows in terminal (script) AND cell output (notebook)
print(f"Loaded {len(data)} items")
Interactive control with CLI fallback
# Parse CLI args first
parser = argparse.ArgumentParser()
parser.add_argument("--count", type=int, default=10)
args, _ = parser.parse_known_args()
# Create UI control with CLI default
slider = mo.ui.slider(1, 100, value=args.count, label="Count")
# Use it - works in both modes
count = slider.value # UI value in notebook, CLI value in script
Show visuals (notebook only)
# mo.md() with images, mo.ui.table(), etc. only display in notebook
mo.ui.table(dataframe)
# For script mode, also print summary
print(f"DataFrame has {len(df)} rows")
Conditional notebook-only code
# Check if running interactively
if hasattr(mo, 'running_in_notebook') and mo.running_in_notebook():
# Heavy visualization only in notebook
show_complex_plot(data)
Best Practices
- Always include
print()for important output - It works in both modes - Use argparse for all configuration - CLI args work everywhere
- Add
mo.md()explanations between steps - Makes tutorials readable - Test in script mode first - Ensure it works without interactivity
- Keep dependencies minimal - Add
marimoplus only what you need
Learn More
- Downloads last month
- -