marimo / getting-started.py
davanstrien's picture
davanstrien HF Staff
Simplify getting-started notebook
e9aa104
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "marimo",
# "datasets",
# "huggingface-hub",
# ]
# ///
"""
Getting Started with Hugging Face Datasets
This marimo notebook works in two modes:
- Interactive: uvx marimo edit --sandbox getting-started.py
- Script: uv run getting-started.py --dataset squad
Same file, two experiences.
"""
import marimo
app = marimo.App(width="medium")
@app.cell
def _():
import marimo as mo
return (mo,)
@app.cell
def _(mo):
mo.md(
"""
# Getting Started with Hugging Face Datasets
This notebook shows how to load and explore datasets from the Hugging Face Hub.
**Run this notebook:**
- Interactive: `uvx marimo edit --sandbox getting-started.py`
- As a script: `uv run getting-started.py --dataset squad`
"""
)
return
@app.cell
def _(mo):
mo.md(
"""
## Step 1: Configure
Choose which dataset to load. In interactive mode, use the controls below.
In script mode, pass `--dataset` argument.
"""
)
return
@app.cell
def _(mo):
import argparse
# Parse CLI args (works in both modes)
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", default="stanfordnlp/imdb")
parser.add_argument("--split", default="train")
parser.add_argument("--samples", type=int, default=5)
args, _ = parser.parse_known_args()
# Interactive controls (only shown in notebook mode)
dataset_input = mo.ui.text(value=args.dataset, label="Dataset")
split_input = mo.ui.dropdown(["train", "test", "validation"], value=args.split, label="Split")
samples_input = mo.ui.slider(1, 20, value=args.samples, label="Samples")
mo.hstack([dataset_input, split_input, samples_input])
return args, argparse, dataset_input, parser, samples_input, split_input
@app.cell
def _(args, dataset_input, mo, samples_input, split_input):
# Use interactive values if available, otherwise CLI args
dataset_name = dataset_input.value or args.dataset
split_name = split_input.value or args.split
num_samples = samples_input.value or args.samples
print(f"Dataset: {dataset_name}, Split: {split_name}, Samples: {num_samples}")
return dataset_name, num_samples, split_name
@app.cell
def _(mo):
mo.md(
"""
## Step 2: Load Dataset
We use the `datasets` library to stream data directly from the Hub.
No need to download the entire dataset first!
"""
)
return
@app.cell
def _(dataset_name, split_name):
from datasets import load_dataset
print(f"Loading {dataset_name}...")
dataset = load_dataset(dataset_name, split=split_name)
print(f"Loaded {len(dataset):,} rows")
print(f"Features: {list(dataset.features.keys())}")
return dataset, load_dataset
@app.cell
def _(mo):
mo.md(
"""
## Step 3: Explore the Data
Let's look at a few samples from the dataset.
"""
)
return
@app.cell
def _(dataset, mo, num_samples):
# Select samples and display
samples = dataset.select(range(min(num_samples, len(dataset))))
df = samples.to_pandas()
# Truncate long text for display
for col in df.select_dtypes(include=["object"]).columns:
df[col] = df[col].apply(lambda x: str(x)[:200] + "..." if len(str(x)) > 200 else x)
print(df.to_string()) # Shows in script mode
mo.ui.table(df) # Shows in interactive mode
return df, samples
@app.cell
def _(mo):
mo.md(
"""
## Next Steps
- Try different datasets: `squad`, `emotion`, `wikitext`
- Run on HF Jobs: `hf jobs uv run --flavor cpu-basic ... getting-started.py`
- Check out more UV scripts at [uv-scripts](https://huggingface.co/uv-scripts)
"""
)
return
if __name__ == "__main__":
app.run()