Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold4

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6719
  • Qwk: 0.6355
  • Mse: 0.6719
  • Rmse: 0.8197

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 1 13.2446 0.0 13.2446 3.6393
No log 2.0 2 11.4362 0.0021 11.4362 3.3817
No log 3.0 3 9.5547 0.0060 9.5547 3.0911
No log 4.0 4 8.7503 0.0016 8.7503 2.9581
No log 5.0 5 7.7381 0.0018 7.7381 2.7818
No log 6.0 6 7.0140 0.0 7.0140 2.6484
No log 7.0 7 6.4567 0.0042 6.4567 2.5410
No log 8.0 8 5.4971 0.0483 5.4971 2.3446
No log 9.0 9 4.6369 0.0223 4.6369 2.1534
No log 10.0 10 4.3683 0.0138 4.3683 2.0900
No log 11.0 11 3.5852 0.0079 3.5852 1.8935
No log 12.0 12 3.1347 0.0079 3.1347 1.7705
No log 13.0 13 2.7263 0.0106 2.7263 1.6512
No log 14.0 14 2.3806 0.0847 2.3806 1.5429
No log 15.0 15 2.1070 0.1145 2.1070 1.4516
No log 16.0 16 1.8036 0.1188 1.8036 1.3430
No log 17.0 17 1.6139 0.1014 1.6139 1.2704
No log 18.0 18 1.4148 0.0752 1.4148 1.1895
No log 19.0 19 1.2804 0.0533 1.2804 1.1315
No log 20.0 20 1.1611 0.0533 1.1611 1.0776
No log 21.0 21 1.1392 0.0558 1.1392 1.0673
No log 22.0 22 1.0178 0.0702 1.0178 1.0089
No log 23.0 23 0.8565 0.1831 0.8565 0.9255
No log 24.0 24 0.7860 0.3089 0.7860 0.8866
No log 25.0 25 0.7755 0.3556 0.7755 0.8806
No log 26.0 26 0.7226 0.3512 0.7226 0.8501
No log 27.0 27 0.6725 0.4256 0.6725 0.8201
No log 28.0 28 0.6478 0.4261 0.6478 0.8049
No log 29.0 29 0.6116 0.4414 0.6116 0.7820
No log 30.0 30 0.6005 0.4375 0.6005 0.7749
No log 31.0 31 0.5570 0.4587 0.5570 0.7463
No log 32.0 32 0.5856 0.4360 0.5856 0.7652
No log 33.0 33 0.5654 0.4562 0.5654 0.7519
No log 34.0 34 0.5219 0.5034 0.5219 0.7224
No log 35.0 35 0.5201 0.5120 0.5201 0.7212
No log 36.0 36 0.5484 0.5238 0.5484 0.7406
No log 37.0 37 0.6685 0.4591 0.6685 0.8176
No log 38.0 38 0.6781 0.4704 0.6781 0.8235
No log 39.0 39 0.5812 0.5903 0.5812 0.7623
No log 40.0 40 0.5474 0.6262 0.5474 0.7399
No log 41.0 41 0.5990 0.6062 0.5990 0.7739
No log 42.0 42 0.5749 0.6200 0.5749 0.7582
No log 43.0 43 0.5909 0.6394 0.5909 0.7687
No log 44.0 44 0.6623 0.6020 0.6623 0.8138
No log 45.0 45 0.6534 0.6180 0.6534 0.8083
No log 46.0 46 0.5828 0.6453 0.5828 0.7634
No log 47.0 47 0.5783 0.6449 0.5783 0.7605
No log 48.0 48 0.6225 0.6431 0.6225 0.7890
No log 49.0 49 0.6890 0.6252 0.6890 0.8300
No log 50.0 50 0.7343 0.6139 0.7343 0.8569
No log 51.0 51 0.6827 0.6411 0.6827 0.8263
No log 52.0 52 0.6242 0.6489 0.6242 0.7901
No log 53.0 53 0.6213 0.6446 0.6213 0.7882
No log 54.0 54 0.6411 0.6531 0.6411 0.8007
No log 55.0 55 0.6415 0.6574 0.6415 0.8009
No log 56.0 56 0.7086 0.6488 0.7086 0.8418
No log 57.0 57 0.8559 0.6070 0.8559 0.9252
No log 58.0 58 0.9021 0.5792 0.9021 0.9498
No log 59.0 59 0.8169 0.6250 0.8169 0.9038
No log 60.0 60 0.6882 0.6490 0.6882 0.8296
No log 61.0 61 0.5929 0.6704 0.5929 0.7700
No log 62.0 62 0.5792 0.6535 0.5792 0.7611
No log 63.0 63 0.5915 0.6706 0.5915 0.7691
No log 64.0 64 0.6637 0.6332 0.6637 0.8147
No log 65.0 65 0.8538 0.6013 0.8538 0.9240
No log 66.0 66 0.9702 0.5630 0.9702 0.9850
No log 67.0 67 0.9555 0.5706 0.9555 0.9775
No log 68.0 68 0.8559 0.5911 0.8559 0.9252
No log 69.0 69 0.7957 0.6084 0.7957 0.8920
No log 70.0 70 0.7509 0.6090 0.7509 0.8666
No log 71.0 71 0.7149 0.6160 0.7149 0.8455
No log 72.0 72 0.6953 0.6171 0.6953 0.8339
No log 73.0 73 0.7191 0.6172 0.7191 0.8480
No log 74.0 74 0.7576 0.6176 0.7576 0.8704
No log 75.0 75 0.7337 0.6240 0.7337 0.8566
No log 76.0 76 0.7655 0.6147 0.7655 0.8750
No log 77.0 77 0.7510 0.6175 0.7510 0.8666
No log 78.0 78 0.7301 0.6248 0.7301 0.8545
No log 79.0 79 0.7257 0.6189 0.7257 0.8519
No log 80.0 80 0.6754 0.6386 0.6754 0.8218
No log 81.0 81 0.6615 0.6397 0.6615 0.8133
No log 82.0 82 0.6753 0.6379 0.6753 0.8217
No log 83.0 83 0.6719 0.6355 0.6719 0.8197

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
7
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold4

Finetuned
(6282)
this model

Evaluation results