Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold4
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6719
- Qwk: 0.6355
- Mse: 0.6719
- Rmse: 0.8197
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|---|---|---|---|---|---|---|
| No log | 1.0 | 1 | 13.2446 | 0.0 | 13.2446 | 3.6393 |
| No log | 2.0 | 2 | 11.4362 | 0.0021 | 11.4362 | 3.3817 |
| No log | 3.0 | 3 | 9.5547 | 0.0060 | 9.5547 | 3.0911 |
| No log | 4.0 | 4 | 8.7503 | 0.0016 | 8.7503 | 2.9581 |
| No log | 5.0 | 5 | 7.7381 | 0.0018 | 7.7381 | 2.7818 |
| No log | 6.0 | 6 | 7.0140 | 0.0 | 7.0140 | 2.6484 |
| No log | 7.0 | 7 | 6.4567 | 0.0042 | 6.4567 | 2.5410 |
| No log | 8.0 | 8 | 5.4971 | 0.0483 | 5.4971 | 2.3446 |
| No log | 9.0 | 9 | 4.6369 | 0.0223 | 4.6369 | 2.1534 |
| No log | 10.0 | 10 | 4.3683 | 0.0138 | 4.3683 | 2.0900 |
| No log | 11.0 | 11 | 3.5852 | 0.0079 | 3.5852 | 1.8935 |
| No log | 12.0 | 12 | 3.1347 | 0.0079 | 3.1347 | 1.7705 |
| No log | 13.0 | 13 | 2.7263 | 0.0106 | 2.7263 | 1.6512 |
| No log | 14.0 | 14 | 2.3806 | 0.0847 | 2.3806 | 1.5429 |
| No log | 15.0 | 15 | 2.1070 | 0.1145 | 2.1070 | 1.4516 |
| No log | 16.0 | 16 | 1.8036 | 0.1188 | 1.8036 | 1.3430 |
| No log | 17.0 | 17 | 1.6139 | 0.1014 | 1.6139 | 1.2704 |
| No log | 18.0 | 18 | 1.4148 | 0.0752 | 1.4148 | 1.1895 |
| No log | 19.0 | 19 | 1.2804 | 0.0533 | 1.2804 | 1.1315 |
| No log | 20.0 | 20 | 1.1611 | 0.0533 | 1.1611 | 1.0776 |
| No log | 21.0 | 21 | 1.1392 | 0.0558 | 1.1392 | 1.0673 |
| No log | 22.0 | 22 | 1.0178 | 0.0702 | 1.0178 | 1.0089 |
| No log | 23.0 | 23 | 0.8565 | 0.1831 | 0.8565 | 0.9255 |
| No log | 24.0 | 24 | 0.7860 | 0.3089 | 0.7860 | 0.8866 |
| No log | 25.0 | 25 | 0.7755 | 0.3556 | 0.7755 | 0.8806 |
| No log | 26.0 | 26 | 0.7226 | 0.3512 | 0.7226 | 0.8501 |
| No log | 27.0 | 27 | 0.6725 | 0.4256 | 0.6725 | 0.8201 |
| No log | 28.0 | 28 | 0.6478 | 0.4261 | 0.6478 | 0.8049 |
| No log | 29.0 | 29 | 0.6116 | 0.4414 | 0.6116 | 0.7820 |
| No log | 30.0 | 30 | 0.6005 | 0.4375 | 0.6005 | 0.7749 |
| No log | 31.0 | 31 | 0.5570 | 0.4587 | 0.5570 | 0.7463 |
| No log | 32.0 | 32 | 0.5856 | 0.4360 | 0.5856 | 0.7652 |
| No log | 33.0 | 33 | 0.5654 | 0.4562 | 0.5654 | 0.7519 |
| No log | 34.0 | 34 | 0.5219 | 0.5034 | 0.5219 | 0.7224 |
| No log | 35.0 | 35 | 0.5201 | 0.5120 | 0.5201 | 0.7212 |
| No log | 36.0 | 36 | 0.5484 | 0.5238 | 0.5484 | 0.7406 |
| No log | 37.0 | 37 | 0.6685 | 0.4591 | 0.6685 | 0.8176 |
| No log | 38.0 | 38 | 0.6781 | 0.4704 | 0.6781 | 0.8235 |
| No log | 39.0 | 39 | 0.5812 | 0.5903 | 0.5812 | 0.7623 |
| No log | 40.0 | 40 | 0.5474 | 0.6262 | 0.5474 | 0.7399 |
| No log | 41.0 | 41 | 0.5990 | 0.6062 | 0.5990 | 0.7739 |
| No log | 42.0 | 42 | 0.5749 | 0.6200 | 0.5749 | 0.7582 |
| No log | 43.0 | 43 | 0.5909 | 0.6394 | 0.5909 | 0.7687 |
| No log | 44.0 | 44 | 0.6623 | 0.6020 | 0.6623 | 0.8138 |
| No log | 45.0 | 45 | 0.6534 | 0.6180 | 0.6534 | 0.8083 |
| No log | 46.0 | 46 | 0.5828 | 0.6453 | 0.5828 | 0.7634 |
| No log | 47.0 | 47 | 0.5783 | 0.6449 | 0.5783 | 0.7605 |
| No log | 48.0 | 48 | 0.6225 | 0.6431 | 0.6225 | 0.7890 |
| No log | 49.0 | 49 | 0.6890 | 0.6252 | 0.6890 | 0.8300 |
| No log | 50.0 | 50 | 0.7343 | 0.6139 | 0.7343 | 0.8569 |
| No log | 51.0 | 51 | 0.6827 | 0.6411 | 0.6827 | 0.8263 |
| No log | 52.0 | 52 | 0.6242 | 0.6489 | 0.6242 | 0.7901 |
| No log | 53.0 | 53 | 0.6213 | 0.6446 | 0.6213 | 0.7882 |
| No log | 54.0 | 54 | 0.6411 | 0.6531 | 0.6411 | 0.8007 |
| No log | 55.0 | 55 | 0.6415 | 0.6574 | 0.6415 | 0.8009 |
| No log | 56.0 | 56 | 0.7086 | 0.6488 | 0.7086 | 0.8418 |
| No log | 57.0 | 57 | 0.8559 | 0.6070 | 0.8559 | 0.9252 |
| No log | 58.0 | 58 | 0.9021 | 0.5792 | 0.9021 | 0.9498 |
| No log | 59.0 | 59 | 0.8169 | 0.6250 | 0.8169 | 0.9038 |
| No log | 60.0 | 60 | 0.6882 | 0.6490 | 0.6882 | 0.8296 |
| No log | 61.0 | 61 | 0.5929 | 0.6704 | 0.5929 | 0.7700 |
| No log | 62.0 | 62 | 0.5792 | 0.6535 | 0.5792 | 0.7611 |
| No log | 63.0 | 63 | 0.5915 | 0.6706 | 0.5915 | 0.7691 |
| No log | 64.0 | 64 | 0.6637 | 0.6332 | 0.6637 | 0.8147 |
| No log | 65.0 | 65 | 0.8538 | 0.6013 | 0.8538 | 0.9240 |
| No log | 66.0 | 66 | 0.9702 | 0.5630 | 0.9702 | 0.9850 |
| No log | 67.0 | 67 | 0.9555 | 0.5706 | 0.9555 | 0.9775 |
| No log | 68.0 | 68 | 0.8559 | 0.5911 | 0.8559 | 0.9252 |
| No log | 69.0 | 69 | 0.7957 | 0.6084 | 0.7957 | 0.8920 |
| No log | 70.0 | 70 | 0.7509 | 0.6090 | 0.7509 | 0.8666 |
| No log | 71.0 | 71 | 0.7149 | 0.6160 | 0.7149 | 0.8455 |
| No log | 72.0 | 72 | 0.6953 | 0.6171 | 0.6953 | 0.8339 |
| No log | 73.0 | 73 | 0.7191 | 0.6172 | 0.7191 | 0.8480 |
| No log | 74.0 | 74 | 0.7576 | 0.6176 | 0.7576 | 0.8704 |
| No log | 75.0 | 75 | 0.7337 | 0.6240 | 0.7337 | 0.8566 |
| No log | 76.0 | 76 | 0.7655 | 0.6147 | 0.7655 | 0.8750 |
| No log | 77.0 | 77 | 0.7510 | 0.6175 | 0.7510 | 0.8666 |
| No log | 78.0 | 78 | 0.7301 | 0.6248 | 0.7301 | 0.8545 |
| No log | 79.0 | 79 | 0.7257 | 0.6189 | 0.7257 | 0.8519 |
| No log | 80.0 | 80 | 0.6754 | 0.6386 | 0.6754 | 0.8218 |
| No log | 81.0 | 81 | 0.6615 | 0.6397 | 0.6615 | 0.8133 |
| No log | 82.0 | 82 | 0.6753 | 0.6379 | 0.6753 | 0.8217 |
| No log | 83.0 | 83 | 0.6719 | 0.6355 | 0.6719 | 0.8197 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Model tree for genki10/Version_weird_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold4
Base model
google-bert/bert-base-uncased