|
|
--- |
|
|
license: apache-2.0 |
|
|
base_model: bert-base-uncased |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
datasets: |
|
|
- arxiv_dataset |
|
|
metrics: |
|
|
- accuracy |
|
|
- precision |
|
|
- recall |
|
|
- f1 |
|
|
model-index: |
|
|
- name: baseline_BERT_10K_steps |
|
|
results: |
|
|
- task: |
|
|
name: Text Classification |
|
|
type: text-classification |
|
|
dataset: |
|
|
name: arxiv_dataset |
|
|
type: arxiv_dataset |
|
|
config: default |
|
|
split: train |
|
|
args: default |
|
|
metrics: |
|
|
- name: Accuracy |
|
|
type: accuracy |
|
|
value: 0.9905994544286106 |
|
|
- name: Precision |
|
|
type: precision |
|
|
value: 0.7827298050139275 |
|
|
- name: Recall |
|
|
type: recall |
|
|
value: 0.05172572480441785 |
|
|
- name: F1 |
|
|
type: f1 |
|
|
value: 0.09703876370543037 |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# baseline_BERT_10K_steps |
|
|
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the arxiv_dataset dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.0356 |
|
|
- Accuracy: 0.9906 |
|
|
- Precision: 0.7827 |
|
|
- Recall: 0.0517 |
|
|
- F1: 0.0970 |
|
|
- Hamming: 0.0094 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 2e-05 |
|
|
- train_batch_size: 6 |
|
|
- eval_batch_size: 6 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- lr_scheduler_warmup_ratio: 0.1 |
|
|
- training_steps: 10000 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming | |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| |
|
|
| No log | 0.0 | 500 | 0.1602 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.0 | 1000 | 0.0573 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.0 | 1500 | 0.0504 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.01 | 2000 | 0.0492 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.01 | 2500 | 0.0488 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.01 | 3000 | 0.0485 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.01 | 3500 | 0.0477 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.01 | 4000 | 0.0467 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.01 | 4500 | 0.0455 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.01 | 5000 | 0.0442 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.02 | 5500 | 0.0422 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.02 | 6000 | 0.0408 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.02 | 6500 | 0.0394 | 0.9902 | 0.0 | 0.0 | 0.0 | 0.0098 | |
|
|
| No log | 0.02 | 7000 | 0.0385 | 0.9902 | 1.0 | 0.0011 | 0.0022 | 0.0098 | |
|
|
| No log | 0.02 | 7500 | 0.0376 | 0.9903 | 0.7949 | 0.0057 | 0.0113 | 0.0097 | |
|
|
| No log | 0.02 | 8000 | 0.0368 | 0.9903 | 0.8071 | 0.0146 | 0.0287 | 0.0097 | |
|
|
| No log | 0.03 | 8500 | 0.0363 | 0.9905 | 0.7372 | 0.0465 | 0.0874 | 0.0095 | |
|
|
| No log | 0.03 | 9000 | 0.0359 | 0.9905 | 0.7811 | 0.0381 | 0.0727 | 0.0095 | |
|
|
| No log | 0.03 | 9500 | 0.0357 | 0.9906 | 0.8029 | 0.0562 | 0.1051 | 0.0094 | |
|
|
| 0.0665 | 0.03 | 10000 | 0.0356 | 0.9906 | 0.7827 | 0.0517 | 0.0970 | 0.0094 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.37.2 |
|
|
- Pytorch 1.12.1+cu113 |
|
|
- Datasets 2.16.1 |
|
|
- Tokenizers 0.15.1 |
|
|
|