MobileNet-v3-Small: Optimized for Qualcomm Devices

MobileNetV3Small is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This is based on the implementation of MobileNet-v3-Small found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.

Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.

Getting Started

There are two ways to deploy this model on your device:

Option 1: Download Pre-Exported Models

Below are pre-exported model assets ready for deployment.

Runtime Precision Chipset SDK Versions Download
ONNX float Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
ONNX w8a16 Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
QNN_DLC float Universal QAIRT 2.42 Download
QNN_DLC w8a16 Universal QAIRT 2.42 Download
TFLITE float Universal QAIRT 2.42, TFLite 2.17.0 Download

For more device-specific assets and performance metrics, visit MobileNet-v3-Small on Qualcomm® AI Hub.

Option 2: Export with Custom Configurations

Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:

  • Custom weights (e.g., fine-tuned checkpoints)
  • Custom input shapes
  • Target device and runtime configurations

This option is ideal if you need to customize the model beyond the default configuration provided here.

See our repository for MobileNet-v3-Small on GitHub for usage instructions.

Model Details

Model Type: Model_use_case.image_classification

Model Stats:

  • Model checkpoint: Imagenet
  • Input resolution: 224x224
  • Number of parameters: 2.54M
  • Model size (float): 9.71 MB

Performance Summary

Model Runtime Precision Chipset Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit
MobileNet-v3-Small ONNX float Snapdragon® X Elite 0.676 ms 5 - 5 MB NPU
MobileNet-v3-Small ONNX float Snapdragon® 8 Gen 3 Mobile 0.515 ms 0 - 111 MB NPU
MobileNet-v3-Small ONNX float Qualcomm® QCS8550 (Proxy) 0.741 ms 0 - 8 MB NPU
MobileNet-v3-Small ONNX float Qualcomm® QCS9075 1.014 ms 1 - 3 MB NPU
MobileNet-v3-Small ONNX float Snapdragon® 8 Elite For Galaxy Mobile 0.398 ms 0 - 101 MB NPU
MobileNet-v3-Small ONNX float Snapdragon® 8 Elite Gen 5 Mobile 0.346 ms 0 - 100 MB NPU
MobileNet-v3-Small QNN_DLC float Snapdragon® X Elite 0.977 ms 1 - 1 MB NPU
MobileNet-v3-Small QNN_DLC float Snapdragon® 8 Gen 3 Mobile 0.556 ms 0 - 46 MB NPU
MobileNet-v3-Small QNN_DLC float Qualcomm® QCS8275 (Proxy) 2.099 ms 1 - 31 MB NPU
MobileNet-v3-Small QNN_DLC float Qualcomm® QCS8550 (Proxy) 0.828 ms 1 - 2 MB NPU
MobileNet-v3-Small QNN_DLC float Qualcomm® SA8775P 1.102 ms 1 - 32 MB NPU
MobileNet-v3-Small QNN_DLC float Qualcomm® QCS9075 0.986 ms 3 - 5 MB NPU
MobileNet-v3-Small QNN_DLC float Qualcomm® QCS8450 (Proxy) 1.601 ms 0 - 47 MB NPU
MobileNet-v3-Small QNN_DLC float Qualcomm® SA7255P 2.099 ms 1 - 31 MB NPU
MobileNet-v3-Small QNN_DLC float Qualcomm® SA8295P 1.464 ms 0 - 29 MB NPU
MobileNet-v3-Small QNN_DLC float Snapdragon® 8 Elite For Galaxy Mobile 0.405 ms 1 - 31 MB NPU
MobileNet-v3-Small QNN_DLC float Snapdragon® 8 Elite Gen 5 Mobile 0.325 ms 1 - 34 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Snapdragon® X Elite 0.955 ms 0 - 0 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Snapdragon® 8 Gen 3 Mobile 0.544 ms 0 - 37 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Qualcomm® QCS6490 2.28 ms 0 - 2 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Qualcomm® QCS8275 (Proxy) 1.717 ms 0 - 26 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Qualcomm® QCS8550 (Proxy) 0.798 ms 0 - 15 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Qualcomm® SA8775P 0.994 ms 0 - 27 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Qualcomm® QCS9075 0.963 ms 0 - 2 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Qualcomm® QCM6690 2.799 ms 0 - 140 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Qualcomm® QCS8450 (Proxy) 0.991 ms 0 - 39 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Qualcomm® SA7255P 1.717 ms 0 - 26 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Qualcomm® SA8295P 1.335 ms 0 - 23 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Snapdragon® 8 Elite For Galaxy Mobile 0.375 ms 0 - 24 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Snapdragon® 7 Gen 4 Mobile 0.804 ms 0 - 25 MB NPU
MobileNet-v3-Small QNN_DLC w8a16 Snapdragon® 8 Elite Gen 5 Mobile 0.313 ms 0 - 28 MB NPU
MobileNet-v3-Small TFLITE float Snapdragon® 8 Gen 3 Mobile 0.557 ms 0 - 46 MB NPU
MobileNet-v3-Small TFLITE float Qualcomm® QCS8275 (Proxy) 2.144 ms 0 - 31 MB NPU
MobileNet-v3-Small TFLITE float Qualcomm® QCS8550 (Proxy) 0.84 ms 0 - 2 MB NPU
MobileNet-v3-Small TFLITE float Qualcomm® SA8775P 1.145 ms 0 - 34 MB NPU
MobileNet-v3-Small TFLITE float Qualcomm® QCS9075 1.011 ms 0 - 8 MB NPU
MobileNet-v3-Small TFLITE float Qualcomm® QCS8450 (Proxy) 1.614 ms 0 - 48 MB NPU
MobileNet-v3-Small TFLITE float Qualcomm® SA7255P 2.144 ms 0 - 31 MB NPU
MobileNet-v3-Small TFLITE float Qualcomm® SA8295P 1.485 ms 0 - 30 MB NPU
MobileNet-v3-Small TFLITE float Snapdragon® 8 Elite For Galaxy Mobile 0.435 ms 0 - 36 MB NPU
MobileNet-v3-Small TFLITE float Snapdragon® 8 Elite Gen 5 Mobile 0.331 ms 0 - 36 MB NPU

License

  • The license for the original implementation of MobileNet-v3-Small can be found here.

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for qualcomm/MobileNet-v3-Small

Quantizations
1 model

Paper for qualcomm/MobileNet-v3-Small