MobileNet-v3-Small: Optimized for Qualcomm Devices
MobileNetV3Small is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This is based on the implementation of MobileNet-v3-Small found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| ONNX | w8a16 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| QNN_DLC | w8a16 | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit MobileNet-v3-Small on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for MobileNet-v3-Small on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.image_classification
Model Stats:
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 2.54M
- Model size (float): 9.71 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| MobileNet-v3-Small | ONNX | float | Snapdragon® X Elite | 0.676 ms | 5 - 5 MB | NPU |
| MobileNet-v3-Small | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 0.515 ms | 0 - 111 MB | NPU |
| MobileNet-v3-Small | ONNX | float | Qualcomm® QCS8550 (Proxy) | 0.741 ms | 0 - 8 MB | NPU |
| MobileNet-v3-Small | ONNX | float | Qualcomm® QCS9075 | 1.014 ms | 1 - 3 MB | NPU |
| MobileNet-v3-Small | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.398 ms | 0 - 101 MB | NPU |
| MobileNet-v3-Small | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.346 ms | 0 - 100 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | float | Snapdragon® X Elite | 0.977 ms | 1 - 1 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 0.556 ms | 0 - 46 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 2.099 ms | 1 - 31 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 0.828 ms | 1 - 2 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | float | Qualcomm® SA8775P | 1.102 ms | 1 - 32 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | float | Qualcomm® QCS9075 | 0.986 ms | 3 - 5 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 1.601 ms | 0 - 47 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | float | Qualcomm® SA7255P | 2.099 ms | 1 - 31 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | float | Qualcomm® SA8295P | 1.464 ms | 0 - 29 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.405 ms | 1 - 31 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.325 ms | 1 - 34 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Snapdragon® X Elite | 0.955 ms | 0 - 0 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Snapdragon® 8 Gen 3 Mobile | 0.544 ms | 0 - 37 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Qualcomm® QCS6490 | 2.28 ms | 0 - 2 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Qualcomm® QCS8275 (Proxy) | 1.717 ms | 0 - 26 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Qualcomm® QCS8550 (Proxy) | 0.798 ms | 0 - 15 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Qualcomm® SA8775P | 0.994 ms | 0 - 27 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Qualcomm® QCS9075 | 0.963 ms | 0 - 2 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Qualcomm® QCM6690 | 2.799 ms | 0 - 140 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Qualcomm® QCS8450 (Proxy) | 0.991 ms | 0 - 39 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Qualcomm® SA7255P | 1.717 ms | 0 - 26 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Qualcomm® SA8295P | 1.335 ms | 0 - 23 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Snapdragon® 8 Elite For Galaxy Mobile | 0.375 ms | 0 - 24 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Snapdragon® 7 Gen 4 Mobile | 0.804 ms | 0 - 25 MB | NPU |
| MobileNet-v3-Small | QNN_DLC | w8a16 | Snapdragon® 8 Elite Gen 5 Mobile | 0.313 ms | 0 - 28 MB | NPU |
| MobileNet-v3-Small | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 0.557 ms | 0 - 46 MB | NPU |
| MobileNet-v3-Small | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 2.144 ms | 0 - 31 MB | NPU |
| MobileNet-v3-Small | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 0.84 ms | 0 - 2 MB | NPU |
| MobileNet-v3-Small | TFLITE | float | Qualcomm® SA8775P | 1.145 ms | 0 - 34 MB | NPU |
| MobileNet-v3-Small | TFLITE | float | Qualcomm® QCS9075 | 1.011 ms | 0 - 8 MB | NPU |
| MobileNet-v3-Small | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 1.614 ms | 0 - 48 MB | NPU |
| MobileNet-v3-Small | TFLITE | float | Qualcomm® SA7255P | 2.144 ms | 0 - 31 MB | NPU |
| MobileNet-v3-Small | TFLITE | float | Qualcomm® SA8295P | 1.485 ms | 0 - 30 MB | NPU |
| MobileNet-v3-Small | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 0.435 ms | 0 - 36 MB | NPU |
| MobileNet-v3-Small | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 0.331 ms | 0 - 36 MB | NPU |
License
- The license for the original implementation of MobileNet-v3-Small can be found here.
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
