pii-ner-nemotron
Model summary
PII NER model trained on nemotron dataset for multilingual PII entity extraction.
- Base model:
xlm-roberta-large - Repository:
scanpatch/pii-ner-nemotron - Training run name:
pii-ner-nemotron - Export timestamp (UTC):
2025-12-29T12:06:13.731145+00:00
Labels
Entity types
addressaddress_apartmentaddress_buildingaddress_cityaddress_countryaddress_districtaddress_geolocationaddress_houseaddress_postal_codeaddress_regionaddress_streetdatedocument_numberemailfirst_nameiplast_namemiddle_namemilitary_individual_numbermobile_phonenamename_initialsnicknameorganizationsnilstinvehicle_number
Evaluation
| Metric | Value |
|---|---|
test_f1 |
0.9768405285513023 |
test_precision |
0.9734942064790006 |
test_recall |
0.9802099354987895 |
test_accuracy |
0.9977181928808507 |
train_runtime |
1693.5057 |
train_samples_per_second |
238.116 |
How to use
from transformers import pipeline
ner = pipeline(
"token-classification",
model="scanpatch/pii-ner-nemotron",
aggregation_strategy="simple",
)
text = "Contact me at test@example.com and my phone is +380 67 123 45 67."
print(ner(text))
- Downloads last month
- 6
Model tree for scanpatch/pii-ner-nemotron
Base model
FacebookAI/xlm-roberta-largeEvaluation results
- f1self-reported0.977