Spaces:
Sleeping
Sleeping
File size: 44,706 Bytes
5cd2a27 a85a2ba 5cd2a27 0f30e70 9f5ffa7 6f8b14c 737550a e69a823 0f30e70 54e6fd7 0f30e70 a85a2ba 317d33d 0f30e70 9f5ffa7 5cd2a27 54e6fd7 5cd2a27 9f5ffa7 0f30e70 b52e85e 91cd67d dbbd091 317d33d dbbd091 5cd2a27 8746f77 0f30e70 8746f77 54e6fd7 6f8b14c f2de873 54e6fd7 dbbd091 54e6fd7 dbbd091 5cd2a27 e35ada0 5cd2a27 54e6fd7 5cd2a27 dbbd091 5cd2a27 1379618 f4c864c 5cd2a27 a85a2ba 5cd2a27 f4c864c 5cd2a27 f4c864c a85a2ba 4639383 9f5ffa7 f4c864c 54e6fd7 5cd2a27 54e6fd7 8313e74 0f30e70 8313e74 54e6fd7 0f30e70 54e6fd7 5cd2a27 8313e74 54e6fd7 0f30e70 9f5ffa7 54e6fd7 8313e74 54e6fd7 8313e74 54e6fd7 8313e74 54e6fd7 9f5ffa7 0f30e70 9f5ffa7 54e6fd7 9f5ffa7 54e6fd7 5cd2a27 54e6fd7 317d33d 54e6fd7 317d33d 54e6fd7 6f8b14c 54e6fd7 f4c864c 8313e74 54e6fd7 6f8b14c 6231519 0f30e70 317d33d 9f5ffa7 0f30e70 54e6fd7 317d33d 54e6fd7 317d33d 54e6fd7 317d33d 8313e74 9f5ffa7 317d33d 54e6fd7 5cd2a27 8746f77 5cd2a27 8746f77 5cd2a27 dbbd091 317d33d dbbd091 317d33d 5cd2a27 89ff26c 6120301 89ff26c 6120301 317d33d 89ff26c 2d95095 54e6fd7 2d95095 317d33d 2d95095 54e6fd7 2d95095 317d33d dbbd091 317d33d 2d95095 dbbd091 f4c864c 5cd2a27 0f30e70 5cd2a27 8313e74 5cd2a27 0f30e70 8313e74 0f30e70 5cd2a27 a85a2ba 5cd2a27 f4c864c 5cd2a27 f4c864c a85a2ba e69a823 f4c864c 2d95095 f4c864c e69a823 f4c864c e69a823 305fb2f f4c864c 305fb2f 5cd2a27 305fb2f 5cd2a27 305fb2f 290985d 305fb2f f4c864c 305fb2f dbbd091 305fb2f 290985d f4c864c 5cd2a27 305fb2f f4c864c 5cd2a27 0f30e70 5cd2a27 f4c864c 317d33d f4c864c 54e6fd7 8746f77 317d33d 8746f77 54e6fd7 5cd2a27 54e6fd7 6f8b14c 8746f77 54e6fd7 6f8b14c 317d33d 6f8b14c 54e6fd7 6f8b14c 5cd2a27 54e6fd7 6f8b14c 5cd2a27 54e6fd7 6f8b14c 54e6fd7 6f8b14c 8746f77 6f8b14c 8746f77 317d33d 8746f77 f2de873 8746f77 f2de873 8746f77 f2de873 8746f77 f2de873 8746f77 f2de873 54e6fd7 5cd2a27 9f5ffa7 5cd2a27 9f5ffa7 f2de873 317d33d 6f8b14c 9f5ffa7 5e4989a 9f5ffa7 54e6fd7 5cd2a27 f2de873 9f5ffa7 0f30e70 5e4989a b52e85e 0f30e70 5e4989a 9f5ffa7 8746f77 0f30e70 8746f77 f8d0d78 8746f77 317d33d 0f30e70 8746f77 f2de873 8746f77 5cd2a27 0f30e70 54e6fd7 8746f77 54e6fd7 8746f77 54e6fd7 f4c864c 8313e74 f4c864c 8313e74 f4c864c 54e6fd7 f4c864c 54e6fd7 6f8b14c 54e6fd7 0f30e70 54e6fd7 f4c864c 56b443f 0f30e70 56b443f 0f30e70 56b443f f8d0d78 8746f77 2f81a3f 9f5ffa7 8746f77 2f81a3f 9f5ffa7 317d33d 5cd2a27 8746f77 8313e74 6f8b14c 8313e74 0f30e70 6f8b14c 8313e74 6f8b14c f2de873 8313e74 0f30e70 54e6fd7 8746f77 f2de873 8746f77 f2de873 8746f77 f8d0d78 8746f77 f2de873 0f30e70 dbbd091 a85a2ba 0f30e70 dbbd091 317d33d dbbd091 e1a6782 dbbd091 f8d0d78 dbbd091 e1a6782 dbbd091 f8d0d78 dbbd091 f2de873 5cd2a27 6f8b14c f4c864c 6f8b14c 54e6fd7 6f8b14c 0f30e70 3857859 317d33d 8746f77 f8d0d78 6f8b14c 8746f77 54e6fd7 9f5ffa7 54e6fd7 9f5ffa7 54e6fd7 b52e85e 54e6fd7 8746f77 54e6fd7 9f5ffa7 6f8b14c 54e6fd7 6f8b14c 0f30e70 8746f77 54e6fd7 8746f77 5cd2a27 f8d0d78 5cd2a27 8746f77 54e6fd7 f8d0d78 54e6fd7 6f8b14c f8d0d78 f2de873 f8d0d78 54e6fd7 f8d0d78 f066549 f8d0d78 f066549 b52e85e f8d0d78 f066549 f8d0d78 f066549 f8d0d78 f066549 f8d0d78 f066549 f8d0d78 f066549 f8d0d78 f066549 f8d0d78 f066549 f8d0d78 f066549 f8d0d78 5cd2a27 879ce88 f8d0d78 5570fdd 5cd2a27 f8d0d78 879ce88 f8d0d78 879ce88 f8d0d78 879ce88 613dc76 5cd2a27 0f30e70 5cd2a27 57c4398 6231519 dbbd091 57c4398 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 |
# =====================================================================
# ForgeCaptions - Gradio app for single & batch image captioning (Spaces-only)
# =====================================================================
# ------------------------------
# 0) Imports & environment
# ------------------------------
import os
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1")
os.environ.setdefault("HF_HOME", "/home/user/.cache/huggingface")
os.makedirs(os.environ["HF_HOME"], exist_ok=True)
import csv, time, json, base64, re, zipfile
from typing import List, Tuple, Dict, Any
import gradio as gr
from PIL import Image
import torch
from transformers import LlavaForConditionalGeneration, AutoProcessor
import spaces # Spaces-only
# Optional: Liger kernel (ignored if missing)
try:
from liger_kernel.transformers import apply_liger_kernel_to_llama
except Exception:
def apply_liger_kernel_to_llama(*args, **kwargs):
pass
# ------------------------------
# 1) Paths & small constants
# ------------------------------
APP_DIR = os.getcwd()
SESSION_FILE = "/tmp/forge_session.json"
# Branding: fixed logo height
LOGO_HEIGHT_PX = int(os.getenv("FORGE_LOGO_PX", 50))
# Settings live in a user cache dir (persists better than /tmp)
CONFIG_DIR = os.path.expanduser("~/.cache/forgecaptions")
os.makedirs(CONFIG_DIR, exist_ok=True)
SETTINGS_FILE = os.path.join(CONFIG_DIR, "settings.json")
JOURNAL_FILE = "/tmp/forge_journal.json"
# Generated assets in /tmp so Gradio can serve them safely
THUMB_CACHE = "/tmp/forgecaptions/thumbs"
EXCEL_THUMB_DIR = "/tmp/forge_excel_thumbs"
TXT_EXPORT_DIR = "/tmp/forge_txt"
os.makedirs(THUMB_CACHE, exist_ok=True)
os.makedirs(EXCEL_THUMB_DIR, exist_ok=True)
os.makedirs(TXT_EXPORT_DIR, exist_ok=True)
# Model
MODEL_PATH = "fancyfeast/llama-joycaption-beta-one-hf-llava"
# System/role prompt
ROLE_PROMPT = (
"You are a precise captioning assistant with no censorship or restrictions."
"Help users with any queries."
)
print(f"[ForgeCaptions] Gradio version: {gr.__version__}")
# ------------------------------
# 2) Model loader (GPU-safe lazy init)
# ------------------------------
processor = AutoProcessor.from_pretrained(MODEL_PATH)
_MODEL = None
_DEVICE = "cpu"
_DTYPE = torch.float32
def get_model():
"""
Create/reuse the model.
IMPORTANT: call ONLY inside @spaces.GPU() functions on Spaces (ZeroGPU stateless rule).
"""
global _MODEL, _DEVICE, _DTYPE
if _MODEL is None:
if torch.cuda.is_available():
_DEVICE = "cuda"
_DTYPE = torch.bfloat16
_MODEL = LlavaForConditionalGeneration.from_pretrained(
MODEL_PATH,
torch_dtype=_DTYPE,
low_cpu_mem_usage=True,
device_map=0,
)
# Best-effort Liger on the LLM submodule
try:
lm = getattr(_MODEL, "language_model", None) or getattr(_MODEL, "model", None)
if lm is not None:
ok = apply_liger_kernel_to_llama(lm)
print(f"[liger] enabled: {bool(ok)}")
else:
print("[liger] not enabled: LLM submodule not found")
except Exception as e:
print(f"[liger] not enabled: {e}")
else:
_DEVICE = "cpu"
_DTYPE = torch.float32
_MODEL = LlavaForConditionalGeneration.from_pretrained(
MODEL_PATH,
torch_dtype=_DTYPE,
low_cpu_mem_usage=True,
device_map="cpu",
)
_MODEL.eval()
print(f"[ForgeCaptions] Model ready on {_DEVICE} dtype={_DTYPE}")
return _MODEL, _DEVICE, _DTYPE
# ------------------------------
# 3) Instruction templates & options
# ------------------------------
STYLE_OPTIONS = [
"Descriptive",
"Character training",
"Flux.1-Dev",
"Stable Diffusion",
"MidJourney",
"E-commerce product",
"Portrait (photography)",
"Landscape (photography)",
"Art analysis (no artist names)",
"Social caption",
"Aesthetic tags (comma-sep)"
]
CAPTION_TYPE_MAP: Dict[str, str] = {
"Descriptive": "Write a detailed description for this image.",
"Character training": (
"Write a thorough, training-ready caption for a character dataset. "
"Describe subject appearance (physique, face/hair), clothing and accessories, actions/pose/gesture, camera angle/focal cues. "
"If multiple subjects are present, describe each briefly (most prominent first) and distinguish them by visible traits."
),
"Flux.1-Dev": "Write a Flux.1-Dev style prompt that would reproduce this image faithfully.",
"Stable Diffusion": "Write a Stable Diffusion style prompt that would reproduce this image faithfully.",
"MidJourney": "Write a MidJourney style prompt that would reproduce this image faithfully.",
"Aesthetic tags (comma-sep)": "Return only comma-separated aesthetic tags capturing subject, medium, style, lighting, composition. No sentences.",
"E-commerce product": "Write a crisp product description highlighting key attributes, materials, color, usage, and distinguishing traits.",
"Portrait (photography)": "Describe the subject, age range, pose, facial expression, camera angle, focal length cues, lighting, and background.",
"Landscape (photography)": "Describe major landscape elements, time of day, weather, vantage point, composition, and mood.",
"Art analysis (no artist names)": "Analyze visible medium, style, composition, and palette. Do not mention artist names or titles.",
"Social caption": "Write an engaging caption describing the visible content. No hashtags.",
}
LENGTH_CHOICES = ["any", "very short", "short", "medium-length", "long", "very long"] + [str(i) for i in range(20, 261, 10)]
_LENGTH_HINTS = {
"very short": "Keep to one very short sentence (≈10–15 words).",
"short": "Keep to a short sentence (≈15–25 words).",
"medium-length":"Write 1–2 sentences (≈30–60 words).",
"long": "Write a detailed caption (≈80–120 words).",
"very long": "Write a very detailed caption (≈150–250 words).",
}
def _length_hint(choice: str) -> str:
if not choice or choice == "any":
return ""
if choice.isdigit():
return f"Limit the caption to at most {choice} words."
return _LENGTH_HINTS.get(choice, "")
EXTRA_CHOICES = [
"Only include a character's modifiable, style-level attributes (hair style/color, makeup, clothing/accessories, pose, expression). Do NOT mention identity traits (skin tone, age, body type).",
"Use profanity when describing sexual acts or genitalia (pussy, fucking, cum, cock, etc.).",
"Be sexually graphic and describe sexual position when visible.",
"Exclude brand names, watermarks, artist names, file/meta info, quality terms, hashtags, and resolution notes.",
"Arrange information in the order: Subject; Clothing/Accessories; Action/Pose; Setting/Environment; Lighting/Camera.",
"Do NOT use any ambiguous language.",
"ONLY describe the most important elements of the image.",
"Include information about the ages of any people/characters when applicable.",
"Explicitly specify the vantage height (eye-level, low-angle worm’s-eye, bird’s-eye, drone, rooftop, etc.).",
"Focus captions only on clothing/fashion details.",
"Focus on setting, scenery, and context; ignore subject details.",
"ONLY describe the subject’s pose, movement, or action. Do NOT mention appearance, clothing, or setting.",
"Include synonyms/alternate phrasing to diversify training set.",
"Include information about depth, lighting, and camera angle.",
"Include information on composition (rule of thirds, symmetry, leading lines, etc).",
"Specify the depth of field and whether the background is in focus or blurred.",
"If applicable, mention the likely use of artificial or natural lighting sources.",
"Identify the image orientation (portrait, landscape, or square) if obvious.",
]
NAME_OPTION = "If there is a person/character in the image you must refer to them as {name}."
DEFAULT_EXTRA_CHOICES = [
"Use profanity when describing sexual acts or genitalia (pussy, fucking, cum, cock, etc.).",
"Be sexually graphic and describe sexual position when visible.",
"Exclude brand names, watermarks, artist names, file/meta info, quality terms, hashtags, and resolution notes.",
"Arrange information in the order: Subject; Clothing/Accessories; Action/Pose; Setting/Environment; Lighting/Camera.",
]
ALL_EXTRA_CHOICES = [NAME_OPTION] + EXTRA_CHOICES
def _valid_extras(selected: list[str] | None) -> list[str]:
allowed = set(ALL_EXTRA_CHOICES)
return [x for x in (selected or []) if x in allowed]
# ------------------------------
# 4) Persistence helpers (settings/session/journal)
# ------------------------------
def save_session(rows: List[dict]):
with open(SESSION_FILE, "w", encoding="utf-8") as f:
json.dump(rows, f, ensure_ascii=False, indent=2)
def load_session() -> List[dict]:
if os.path.exists(SESSION_FILE):
with open(SESSION_FILE, "r", encoding="utf-8") as f:
return json.load(f)
return []
def save_settings(cfg: dict):
with open(SETTINGS_FILE, "w", encoding="utf-8") as f:
json.dump(cfg, f, ensure_ascii=False, indent=2)
def load_settings() -> dict:
cfg = {}
if os.path.exists(SETTINGS_FILE):
try:
with open(SETTINGS_FILE, "r", encoding="utf-8") as f:
cfg = json.load(f) or {}
except Exception:
cfg = {}
defaults = {
"dataset_name": "forgecaptions",
"temperature": 0.6,
"top_p": 0.9,
"max_tokens": 256,
"max_side": 896,
"styles": ["Character training"],
"name": "",
"trigger": "",
"begin": "",
"end": "",
"shape_aliases_enabled": True,
"shape_aliases": [],
"excel_thumb_px": 128,
"logo_px": LOGO_HEIGHT_PX,
"shape_aliases_persist": True,
"extras": DEFAULT_EXTRA_CHOICES,
"caption_length": "long",
}
for k, v in defaults.items():
cfg.setdefault(k, v)
styles = cfg.get("styles") or []
if not isinstance(styles, list):
styles = [styles]
cfg["styles"] = [s for s in styles if s in STYLE_OPTIONS] or ["Character training"]
cfg["extras"] = _valid_extras(cfg.get("extras"))
return cfg
def save_journal(data: dict):
with open(JOURNAL_FILE, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
def load_journal() -> dict:
if os.path.exists(JOURNAL_FILE):
with open(JOURNAL_FILE, "r", encoding="utf-8") as f:
return json.load(f)
return {}
# ------------------------------
# 5) Small utilities (thumbs, resize, prefix/suffix, names)
# ------------------------------
def sanitize_basename(s: str) -> str:
s = (s or "").strip() or "forgecaptions"
return re.sub(r"[^A-Za-z0-9._-]+", "_", s)[:120]
def ensure_thumb(path: str, max_side=256) -> str:
try:
im = Image.open(path).convert("RGB")
except Exception:
return path
w, h = im.size
if max(w, h) > max_side:
s = max_side / max(w, h)
im = im.resize((int(w*s), int(h*s)), Image.LANCZOS)
base = os.path.basename(path)
out_path = os.path.join(THUMB_CACHE, os.path.splitext(base)[0] + f"_thumb_{max_side}.jpg")
try:
im.save(out_path, "JPEG", quality=85, optimize=True)
return out_path
except Exception:
return path
def resize_for_model(im: Image.Image, max_side: int) -> Image.Image:
w, h = im.size
if max(w, h) <= max_side:
return im
s = max_side / max(w, h)
return im.resize((int(w*s), int(h*s)), Image.LANCZOS)
def apply_prefix_suffix(caption: str, trigger_word: str, begin_text: str, end_text: str) -> str:
parts = []
if trigger_word.strip():
parts.append(trigger_word.strip())
if begin_text.strip():
parts.append(begin_text.strip())
parts.append(caption.strip())
if end_text.strip():
parts.append(end_text.strip())
return " ".join([p for p in parts if p])
def logo_b64_img() -> str:
candidates = [
os.path.join(APP_DIR, "forgecaptions-logo.png"),
os.path.join(APP_DIR, "captionforge-logo.png"),
"forgecaptions-logo.png",
"captionforge-logo.png",
]
for p in candidates:
if os.path.exists(p):
with open(p, "rb") as f:
b64 = base64.b64encode(f.read()).decode("ascii")
return f"<img src='data:image/png;base64,{b64}' alt='ForgeCaptions' class='cf-logo'>"
return ""
# ------------------------------
# 6) Shape Aliases (plural-aware + '-shaped' variants)
# ------------------------------
def _plural_token_regex(tok: str) -> str:
t = (tok or "").strip()
if not t: return ""
t_low = t.lower()
if re.search(r"[^aeiou]y$", t_low):
return re.escape(t[:-1]) + r"(?:y|ies)"
if re.search(r"(?:s|x|z|ch|sh)$", t_low):
return re.escape(t) + r"(?:es)?"
return re.escape(t) + r"s?"
def _compile_shape_aliases_from_file():
s = load_settings()
if not s.get("shape_aliases_enabled", True):
return []
compiled = []
for item in s.get("shape_aliases", []):
raw = (item.get("shape") or "").strip()
name = (item.get("name") or "").strip()
if not raw or not name:
continue
tokens = [t.strip() for t in re.split(r"[|,]", raw) if t.strip()]
if not tokens:
continue
alts = [_plural_token_regex(t) for t in tokens]
alts = [a for a in alts if a]
if not alts:
continue
pat = r"\b(?:" + "|".join(alts) + r")(?:[-\s]?shaped)?\b"
compiled.append((re.compile(pat, flags=re.I), name))
return compiled
_SHAPE_ALIASES = _compile_shape_aliases_from_file()
def _refresh_shape_aliases_cache():
global _SHAPE_ALIASES
_SHAPE_ALIASES = _compile_shape_aliases_from_file()
def apply_shape_aliases(caption: str) -> str:
for pat, name in _SHAPE_ALIASES:
caption = pat.sub(f"({name})", caption)
return caption
def get_shape_alias_rows_ui_defaults():
s = load_settings()
rows = [[it.get("shape",""), it.get("name","")] for it in s.get("shape_aliases", [])]
enabled = bool(s.get("shape_aliases_enabled", True))
if not rows:
rows = [["", ""]]
return rows, enabled
def save_shape_alias_rows(enabled, df_rows, persist):
cleaned = []
for r in (df_rows or []):
if not r:
continue
shape = (r[0] or "").strip()
name = (r[1] or "").strip()
if shape and name:
cleaned.append({"shape": shape, "name": name})
status = "✅ Applied for this session only."
if persist:
cfg = load_settings()
cfg["shape_aliases_enabled"] = bool(enabled)
cfg["shape_aliases"] = cleaned
save_settings(cfg)
status = "💾 Saved to disk (will persist across restarts)."
global _SHAPE_ALIASES
if bool(enabled):
compiled = []
for item in cleaned:
raw = item["shape"]; name = item["name"]
toks = [t.strip() for t in re.split(r"[|,]", raw) if t.strip()]
alts = [_plural_token_regex(t) for t in toks]
alts = [a for a in alts if a]
if not alts:
continue
pat = r"\b(?:" + "|".join(alts) + r")(?:[-\s]?shaped)?\b"
compiled.append((re.compile(pat, flags=re.I), name))
_SHAPE_ALIASES = compiled
else:
_SHAPE_ALIASES = []
normalized = [[it["shape"], it["name"]] for it in cleaned] + [["", ""]]
return status, gr.update(value=normalized, row_count=(max(1, len(normalized)), "dynamic"))
# ------------------------------
# 7) Prompt builder
# ------------------------------
def final_instruction(style_list: List[str], extra_opts: List[str], name_value: str, length_choice: str = "long") -> str:
styles = style_list or ["Character training"]
parts = [CAPTION_TYPE_MAP.get(s, "") for s in styles]
core = " ".join(p for p in parts if p).strip()
if extra_opts:
core += " " + " ".join(extra_opts)
if NAME_OPTION in (extra_opts or []):
core = core.replace("{name}", (name_value or "{NAME}").strip())
if "Aesthetic tags (comma-sep)" not in styles:
lh = _length_hint(length_choice or "any")
if lh:
core += " " + lh
return core
# ------------------------------
# 8) GPU caption functions (Spaces-only)
# ------------------------------
def _build_inputs(im: Image.Image, instr: str, dtype) -> Dict[str, Any]:
convo = [
{"role": "system", "content": ROLE_PROMPT},
{"role": "user", "content": instr.strip()},
]
convo_str = processor.apply_chat_template(convo, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[convo_str], images=[im], return_tensors="pt")
if "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(dtype)
return inputs
@spaces.GPU()
@torch.no_grad()
def caption_single(img: Image.Image, instr: str) -> str:
if img is None:
return "No image provided."
s = load_settings()
im = resize_for_model(img, int(s.get("max_side", 896)))
cap = caption_once_core(im, instr, s)
return cap
@spaces.GPU()
@torch.no_grad()
def run_batch(
files: List[Any],
session_rows: List[dict],
instr_text: str,
temp: float,
top_p: float,
max_tokens: int,
max_side: int,
time_budget_s: float | None = None,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Tuple[List[dict], list, list, str, List[str], int, int]:
return run_batch_core(files, session_rows, instr_text, temp, top_p, max_tokens, max_side, time_budget_s, progress)
# Optional tiny probe to satisfy strict scanners (not called)
@spaces.GPU()
def _gpu_probe() -> str:
return "ok"
# ---- shared core routines used by both GPU functions ----
def caption_once_core(im: Image.Image, instr: str, settings: dict) -> str:
cap = caption_once(
im, instr,
settings.get("temperature", 0.6),
settings.get("top_p", 0.9),
settings.get("max_tokens", 256),
)
cap = apply_shape_aliases(cap)
cap = apply_prefix_suffix(cap, settings.get("trigger",""), settings.get("begin",""), settings.get("end",""))
return cap
@torch.no_grad()
def caption_once(im: Image.Image, instr: str, temp: float, top_p: float, max_tokens: int) -> str:
model, device, dtype = get_model()
inputs = _build_inputs(im, instr, dtype)
inputs = {k: (v.to(device) if hasattr(v, "to") else v) for k, v in inputs.items()}
out = model.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=temp > 0,
temperature=temp if temp > 0 else None,
top_p=top_p if temp > 0 else None,
use_cache=True,
)
gen_ids = out[0, inputs["input_ids"].shape[1]:]
return processor.tokenizer.decode(gen_ids, skip_special_tokens=True)
def run_batch_core(
files: List[Any],
session_rows: List[dict],
instr_text: str,
temp: float,
top_p: float,
max_tokens: int,
max_side: int,
time_budget_s: float | None,
progress: gr.Progress,
) -> Tuple[List[dict], list, list, str, List[str], int, int]:
session_rows = session_rows or []
files = [f for f in (files or []) if f and os.path.exists(f)]
total = len(files)
processed = 0
if total == 0:
gallery_pairs = [((r.get("thumb_path") or r.get("path")), r.get("caption",""))
for r in session_rows if (r.get("thumb_path") or r.get("path"))]
table_rows = [[r.get("filename",""), r.get("caption","")] for r in session_rows]
return session_rows, gallery_pairs, table_rows, f"Saved • {time.strftime('%H:%M:%S')}", [], 0, 0
start = time.time()
leftover: List[str] = []
for idx, path in enumerate(progress.tqdm(files, desc="Captioning")):
try:
im = Image.open(path).convert("RGB")
except Exception:
continue
im = resize_for_model(im, max_side)
cap = caption_once(im, instr_text, temp, top_p, max_tokens)
cap = apply_shape_aliases(cap)
s = load_settings()
cap = apply_prefix_suffix(cap, s.get("trigger",""), s.get("begin",""), s.get("end",""))
filename = os.path.basename(path)
thumb = ensure_thumb(path, 256)
session_rows.append({"filename": filename, "caption": cap, "path": path, "thumb_path": thumb})
processed += 1
if (time_budget_s is not None) and ((time.time() - start) >= float(time_budget_s)):
leftover = files[idx+1:]
break
save_session(session_rows)
gallery_pairs = [((r.get("thumb_path") or r.get("path")), r.get("caption",""))
for r in session_rows if (r.get("thumb_path") or r.get("path"))]
table_rows = [[r.get("filename",""), r.get("caption","")] for r in session_rows]
return (
session_rows,
gallery_pairs,
table_rows,
f"Saved • {time.strftime('%H:%M:%S')}",
leftover,
processed,
total,
)
# ------------------------------
# 9) Export helpers (CSV/XLSX/TXT ZIP)
# ------------------------------
def _rows_to_table(rows: List[dict]) -> list:
return [[r.get("filename",""), r.get("caption","")] for r in (rows or [])]
def _table_to_rows(table_value: Any, rows: List[dict]) -> List[dict]:
tbl = table_value or []
new = []
for i, r in enumerate(rows or []):
r = dict(r)
if i < len(tbl) and len(tbl[i]) >= 2:
r["filename"] = str(tbl[i][0]) if tbl[i][0] is not None else r.get("filename","")
r["caption"] = str(tbl[i][1]) if tbl[i][1] is not None else r.get("caption","")
new.append(r)
return new
def export_csv_from_table(table_value: Any, dataset_name: str) -> str:
data = table_value or []
name = sanitize_basename(dataset_name)
out = f"/tmp/{name}_{int(time.time())}.csv"
with open(out, "w", newline="", encoding="utf-8") as f:
w = csv.writer(f); w.writerow(["filename", "caption"]); w.writerows(data)
return out
def _resize_for_excel(path: str, px: int) -> str:
try:
im = Image.open(path).convert("RGB")
except Exception:
return path
w, h = im.size
if max(w, h) > px:
s = px / max(w, h)
im = im.resize((int(w*s), int(h*s)), Image.LANCZOS)
base = os.path.basename(path)
out_path = os.path.join(EXCEL_THUMB_DIR, f"{os.path.splitext(base)[0]}_{px}px.jpg")
try:
im.save(out_path, "JPEG", quality=85, optimize=True)
return out_path
except Exception:
return path
def export_excel_with_thumbs(table_value: Any, session_rows: List[dict], thumb_px: int, dataset_name: str) -> str:
try:
from openpyxl import Workbook
from openpyxl.drawing.image import Image as XLImage
except Exception as e:
raise RuntimeError("Excel export requires 'openpyxl' in requirements.txt.") from e
caption_by_file = {}
for row in (table_value or []):
if not row:
continue
fn = str(row[0]) if len(row) > 0 else ""
cap = str(row[1]) if len(row) > 1 and row[1] is not None else ""
if fn:
caption_by_file[fn] = cap
wb = Workbook(); ws = wb.active; ws.title = "ForgeCaptions"
ws.append(["image", "filename", "caption"])
ws.column_dimensions["A"].width = 24
ws.column_dimensions["B"].width = 42
ws.column_dimensions["C"].width = 100
row_h = int(int(thumb_px) * 0.75)
r_i = 2
for r in (session_rows or []):
fn = r.get("filename",""); cap = caption_by_file.get(fn, r.get("caption",""))
ws.cell(row=r_i, column=2, value=fn)
ws.cell(row=r_i, column=3, value=cap)
img_path = r.get("thumb_path") or r.get("path")
if img_path and os.path.exists(img_path):
try:
resized = _resize_for_excel(img_path, int(thumb_px))
xlimg = XLImage(resized)
ws.add_image(xlimg, f"A{r_i}")
ws.row_dimensions[r_i].height = row_h
except Exception:
pass
r_i += 1
name = sanitize_basename(dataset_name)
out = f"/tmp/{name}_{int(time.time())}.xlsx"
wb.save(out)
return out
def export_txt_zip(table_value: Any, dataset_name: str) -> str:
"""
Create one .txt per caption, zip them.
"""
data = table_value or []
# wipe old
for fn in os.listdir(TXT_EXPORT_DIR):
try:
os.remove(os.path.join(TXT_EXPORT_DIR, fn))
except Exception:
pass
used: Dict[str,int] = {}
for row in data:
if not row:
continue
orig = (row[0] or "item").strip() if len(row) > 0 else "item"
stem = re.sub(r"\.[A-Za-z0-9]+$", "", orig)
stem = sanitize_basename(stem or "item")
if stem in used:
used[stem] += 1
stem = f"{stem}_{used[stem]}"
else:
used[stem] = 0
cap = (row[1] or "").strip() if len(row) > 1 and row[1] is not None else ""
with open(os.path.join(TXT_EXPORT_DIR, f"{stem}.txt"), "w", encoding="utf-8") as f:
f.write(cap)
name = sanitize_basename(dataset_name)
zpath = f"/tmp/{name}_{int(time.time())}_txt.zip"
with zipfile.ZipFile(zpath, "w", zipfile.ZIP_DEFLATED) as z:
for fn in os.listdir(TXT_EXPORT_DIR):
if fn.endswith(".txt"):
z.write(os.path.join(TXT_EXPORT_DIR, fn), arcname=fn)
return zpath
# ------------------------------
# 10) UI header helper (fixed logo size)
# ------------------------------
def _render_header_html(px: int) -> str:
return f"""
<div class="cf-hero">
{logo_b64_img()}
<div class="cf-text">
<h1 class="cf-title">ForgeCaptions</h1>
<div class="cf-sub">JoyCaption Image Captioning</div>
<div class="cf-sub">Import CSV/XLSX • Export CSV/XLSX/TXT</div>
<div class="cf-sub">Batch 10–20 per Zero GPU run • Larger batches with dedicated GPU</div>
</div>
</div>
<hr>
<style>
.cf-logo {{
height: {int(px)}px; /* fixed height */
width: auto;
object-fit: contain;
display: block;
max-width: 320px; /* cap very wide logos */
}}
@media (max-width: 500px) {{
.cf-logo {{ height: {max(48, int(px) - 8)}px; }}
}}
</style>
"""
# ------------------------------
# 11) Handlers (defined before UI)
# ------------------------------
def _split_chunks(files, csize: int):
files = files or []
c = max(1, int(csize))
return [files[i:i + c] for i in range(0, len(files), c)]
def _tpms():
s = load_settings()
return s.get("temperature", 0.6), s.get("top_p", 0.9), s.get("max_tokens", 256)
def _run_click(files, rows, instr, ms, mode, csize, budget_s, no_limit):
t, p, m = _tpms()
files = files or []
budget = None if no_limit else float(budget_s)
if mode == "Manual (step)" and files:
chunks = _split_chunks(files, int(csize))
batch = chunks[0]
remaining = sum(chunks[1:], [])
new_rows, gal, tbl, stamp, leftover_from_batch, done, total = run_batch(
batch, rows or [], instr, t, p, m, int(ms), budget
)
remaining = (leftover_from_batch or []) + remaining
panel_vis = gr.update(visible=bool(remaining))
msg = f"{len(remaining)} files remain. Process next chunk?"
prog = f"Batch progress: {done}/{total} processed in this step • Remaining overall: {len(remaining)}"
return new_rows, gal, tbl, stamp, remaining, panel_vis, gr.update(value=msg), gr.update(value=prog)
# Auto
new_rows, gal, tbl, stamp, leftover, done, total = run_batch(
files, rows or [], instr, t, p, m, int(ms), budget
)
panel_vis = gr.update(visible=bool(leftover))
msg = f"{len(leftover)} files remain. Process next chunk?" if leftover else ""
prog = f"Batch progress: {done}/{total} processed in this call • Remaining: {len(leftover)}"
return new_rows, gal, tbl, stamp, leftover, panel_vis, gr.update(value=msg), gr.update(value=prog)
def _step_next(remain, rows, instr, ms, csize, budget_s, no_limit):
t, p, m = _tpms()
remain = remain or []
budget = None if no_limit else float(budget_s)
if not remain:
return (
rows,
gr.update(value="No files remaining."),
gr.update(visible=False),
[],
[],
[],
"Saved.",
gr.update(value="")
)
batch = remain[:int(csize)]
leftover = remain[int(csize):]
new_rows, gal, tbl, stamp, leftover_from_batch, done, total = run_batch(
batch, rows or [], instr, t, p, m, int(ms), budget
)
leftover = (leftover_from_batch or []) + leftover
panel_vis = gr.update(visible=bool(leftover))
msg = f"{len(leftover)} files remain. Process next chunk?" if leftover else "All done."
prog = f"Batch progress: {done}/{total} processed in this step • Remaining overall: {len(leftover)}"
return new_rows, msg, panel_vis, leftover, gal, tbl, stamp, gr.update(value=prog)
def _step_finish():
return gr.update(visible=False), gr.update(value=""), []
def sync_table_to_session(table_value: Any, session_rows: List[dict]) -> Tuple[List[dict], list, str]:
session_rows = _table_to_rows(table_value, session_rows or [])
save_session(session_rows)
gallery_pairs = [((r.get("thumb_path") or r.get("path")), r.get("caption", ""))
for r in session_rows if (r.get("thumb_path") or r.get("path"))]
return session_rows, gallery_pairs, f"Saved • {time.strftime('%H:%M:%S')}"
# ------------------------------
# 12) UI (Blocks)
# ------------------------------
BASE_CSS = """
:root{--galleryW:50%;--tableW:50%;}
.gradio-container{max-width:100%!important}
/* Header */
.cf-hero{display:flex; align-items:center; justify-content:center; gap:16px;
margin:4px 0 12px; text-align:center;}
.cf-hero .cf-text{text-align:center;}
.cf-title{margin:0;font-size:3.0rem;line-height:1;letter-spacing:.2px}
.cf-sub{margin:6px 0 0;font-size:1.05rem;color:#cfd3da}
/* Results area + robust scrollbars */
.cf-scroll{border:1px solid #e6e6e6; border-radius:10px; padding:8px}
#cfGal{max-height:520px; overflow-y:auto !important;}
#cfTableWrap{max-height:520px; overflow-y:auto !important;}
#cfGal [data-testid="gallery"]{height:auto !important;}
#cfGal .grid > div { height: 96px; }
"""
with gr.Blocks(css=BASE_CSS, title="ForgeCaptions") as demo:
# ---- Header
settings = load_settings()
header_html = gr.HTML(_render_header_html(settings.get("logo_px", LOGO_HEIGHT_PX)))
# ---- Controls group
with gr.Group():
with gr.Row():
# LEFT: styles / extras / name & prefix-suffix
with gr.Column(scale=2):
with gr.Accordion("Caption style (choose one or combine)", open=True):
style_checks = gr.CheckboxGroup(
choices=STYLE_OPTIONS,
value=settings.get("styles", ["Character training"]),
label=None
)
caption_length = gr.Dropdown(
choices=LENGTH_CHOICES,
label="Caption Length",
value=settings.get("caption_length", "long")
)
with gr.Accordion("Extra options", open=False):
extra_opts = gr.CheckboxGroup(
choices=[NAME_OPTION] + EXTRA_CHOICES,
value=settings.get("extras", []),
label=None
)
with gr.Accordion("Name & Prefix/Suffix", open=False):
name_input = gr.Textbox(label="Person / Character Name", value=settings.get("name", ""))
trig = gr.Textbox(label="Trigger word", value=settings.get("trigger",""))
add_start = gr.Textbox(label="Add text to start", value=settings.get("begin",""))
add_end = gr.Textbox(label="Add text to end", value=settings.get("end",""))
# RIGHT: instructions + dataset + general sliders
with gr.Column(scale=1):
with gr.Accordion("Model Instructions", open=False):
instruction_preview = gr.Textbox(
label=None,
lines=12,
value=final_instruction(
settings.get("styles", ["Character training"]),
settings.get("extras", []),
settings.get("name",""),
settings.get("caption_length", "long"),
),
)
dataset_name = gr.Textbox(
label="Dataset name (export title prefix)",
value=settings.get("dataset_name", "forgecaptions")
)
max_side = gr.Slider(256, 1024, settings.get("max_side", 896), step=32, label="Max side (resize)")
excel_thumb_px = gr.Slider(
64, 256, value=settings.get("excel_thumb_px", 128),
step=8, label="Excel thumbnail size (px)"
)
# Chunking
chunk_mode = gr.Radio(
choices=["Auto", "Manual (step)"],
value="Manual (step)", label="Batch mode"
)
chunk_size = gr.Slider(1, 200, value=15, step=1, label="Chunk size")
gpu_budget = gr.Slider(20, 110, value=55, step=5, label="Max seconds per GPU call")
no_time_limit = gr.Checkbox(value=False, label="No time limit (ignore above)")
# Persist instruction + general settings
def _refresh_instruction(styles, extra, name_value, trigv, begv, endv, excel_px, ms, cap_len):
instr = final_instruction(styles or ["Character training"], extra or [], name_value, cap_len)
cfg = load_settings()
cfg.update({
"styles": styles or ["Character training"],
"extras": _valid_extras(extra),
"name": name_value,
"trigger": trigv, "begin": begv, "end": endv,
"excel_thumb_px": int(excel_px),
"max_side": int(ms),
"caption_length": cap_len or "any",
})
save_settings(cfg)
return instr
for comp in [style_checks, extra_opts, name_input, trig, add_start, add_end, excel_thumb_px, max_side, caption_length]:
comp.change(
_refresh_instruction,
inputs=[style_checks, extra_opts, name_input, trig, add_start, add_end, excel_thumb_px, max_side, caption_length],
outputs=[instruction_preview]
)
def _save_dataset_name(name):
cfg = load_settings()
cfg["dataset_name"] = sanitize_basename(name)
save_settings(cfg)
return gr.update()
dataset_name.change(_save_dataset_name, inputs=[dataset_name], outputs=[])
# ---- Shape Aliases (with plural matching + persist)
with gr.Accordion("Shape Aliases", open=False):
gr.Markdown(
"### 🔷 Shape Aliases\n"
"Replace literal **shape tokens** in captions with a preferred **name**.\n\n"
"- Left column = a single token **or** comma/pipe-separated synonyms (e.g., `diamond, rhombus | lozenge`)\n"
"- Right column = replacement name (e.g., `family-emblem`)\n"
"Matches are case-insensitive, catches simple plurals, and also matches `*-shaped` / `* shaped` variants."
)
init_rows, init_enabled = get_shape_alias_rows_ui_defaults()
enable_aliases = gr.Checkbox(label="Enable shape alias replacements", value=init_enabled)
persist_aliases = gr.Checkbox(
label="Save aliases across sessions",
value=load_settings().get("shape_aliases_persist", True)
)
alias_table = gr.Dataframe(
headers=["shape (token or synonyms)", "name to insert"],
value=init_rows,
row_count=(max(1, len(init_rows)), "dynamic"),
datatype=["str", "str"],
type="array",
interactive=True
)
with gr.Row():
add_row_btn = gr.Button("+ Add row", variant="secondary")
clear_btn = gr.Button("Clear", variant="secondary")
save_btn = gr.Button("💾 Save", variant="primary")
save_status = gr.Markdown("")
def _add_row(cur):
cur = (cur or []) + [["", ""]]
return gr.update(value=cur, row_count=(max(1, len(cur)), "dynamic"))
def _clear_rows():
return gr.update(value=[["", ""]], row_count=(1, "dynamic"))
add_row_btn.click(_add_row, inputs=[alias_table], outputs=[alias_table])
clear_btn.click(_clear_rows, outputs=[alias_table])
def _save_alias_persist_flag(v):
cfg = load_settings()
cfg["shape_aliases_persist"] = bool(v)
save_settings(cfg)
return gr.update()
persist_aliases.change(_save_alias_persist_flag, inputs=[persist_aliases], outputs=[])
save_btn.click(
save_shape_alias_rows,
inputs=[enable_aliases, alias_table, persist_aliases],
outputs=[save_status, alias_table]
)
# ---- Tabs: Single & Batch
with gr.Tabs():
with gr.Tab("Single"):
input_image_single = gr.Image(type="pil", label="Input Image", height=512, width=512)
single_caption_btn = gr.Button("Caption")
single_caption_out = gr.Textbox(label="Caption (single)")
single_caption_btn.click(
caption_single,
inputs=[input_image_single, instruction_preview],
outputs=[single_caption_out]
)
with gr.Tab("Batch"):
with gr.Accordion("Uploaded images", open=True):
input_files = gr.File(
label="Drop images (or click to select)",
file_types=["image"],
file_count="multiple",
type="filepath"
)
run_button = gr.Button("Caption batch", variant="primary")
# ---- Results area (gallery left / table right)
rows_state = gr.State(load_session())
autosave_md = gr.Markdown("Ready.")
progress_md = gr.Markdown("")
remaining_state = gr.State([])
with gr.Row():
with gr.Column(scale=2):
gallery = gr.Gallery(
label="Results",
show_label=True,
columns=1,
elem_id="cfGal",
elem_classes=["cf-scroll"]
)
with gr.Column(scale=1, elem_id="cfTableWrap", elem_classes=["cf-scroll"]):
table = gr.Dataframe(
label="Editable captions",
value=_rows_to_table(load_session()),
headers=["filename", "caption"],
interactive=True,
wrap=True,
type="array",
elem_id="cfTable"
)
# ---- Step panel
step_panel = gr.Group(visible=False)
with step_panel:
step_msg = gr.Markdown("")
step_next = gr.Button("Process next chunk")
step_finish = gr.Button("Finish")
# ---- Exports
with gr.Row():
with gr.Column():
export_csv_btn = gr.Button("Export CSV")
csv_file = gr.File(label="CSV file", visible=False)
with gr.Column():
export_xlsx_btn = gr.Button("Export Excel (.xlsx) with thumbnails")
xlsx_file = gr.File(label="Excel file", visible=False)
with gr.Column():
export_txt_btn = gr.Button("Export captions as .txt (zip)")
txt_zip = gr.File(label="TXT zip", visible=False)
# ---- Scroll-sync JS injection (inside Blocks)
gr.HTML("""
<script>
(() => {
const GAL_WRAP_SEL = "#cfGal";
const TABLE_WRAP_SEL = "#cfTableWrap";
const clamp = (v, a, b) => Math.max(a, Math.min(b, v));
function findGalleryHost() {
const wrap = document.querySelector(GAL_WRAP_SEL);
if (!wrap) return null;
return wrap.querySelector('[data-testid="gallery"], [data-testid="image-gallery"]') || wrap;
}
function findTableHost() { return document.querySelector(TABLE_WRAP_SEL); }
function setMaxHeights(gal, tab) {
const targetH = clamp(tab.clientHeight || 520, 360, 520);
gal.style.maxHeight = targetH + "px";
gal.style.overflowY = "auto";
tab.style.maxHeight = targetH + "px";
tab.style.overflowY = "auto";
}
function attachScrollSync(a, b) {
if (!a || !b) return () => {};
let lock = false;
const sync = (src, dst) => {
const maxSrc = Math.max(1, src.scrollHeight - src.clientHeight);
const r = src.scrollTop / maxSrc;
const maxDst = Math.max(1, dst.scrollHeight - dst.clientHeight);
const next = r * maxDst;
if (Math.abs(dst.scrollTop - next) > 1) dst.scrollTop = next;
};
const onA = () => { if (lock) return; lock = true; requestAnimationFrame(() => { sync(a, b); lock = false; }); };
const onB = () => { if (lock) return; lock = true; requestAnimationFrame(() => { sync(b, a); lock = false; }); };
a.addEventListener("scroll", onA, { passive: true });
b.addEventListener("scroll", onB, { passive: true });
return () => { a.removeEventListener("scroll", onA); b.removeEventListener("scroll", onB); };
}
let cleanupScroll = null, resizeObs = null;
function wireUp() {
const gal = findGalleryHost(), tab = findTableHost();
if (!gal || !tab) return false;
setMaxHeights(gal, tab);
if (cleanupScroll) cleanupScroll();
cleanupScroll = attachScrollSync(gal, tab);
if (resizeObs) resizeObs.disconnect();
resizeObs = new ResizeObserver(() => setMaxHeights(gal, tab));
resizeObs.observe(tab); resizeObs.observe(gal);
return true;
}
if (wireUp()) return;
const mo = new MutationObserver(() => { wireUp(); });
mo.observe(document.documentElement || document.body, { childList: true, subtree: true });
window.addEventListener("beforeunload", () => {
mo.disconnect(); if (resizeObs) resizeObs.disconnect(); if (cleanupScroll) cleanupScroll();
});
})();
</script>
""")
# ---- Event bindings (MUST be inside Blocks in Gradio v5)
run_button.click(
_run_click,
inputs=[input_files, rows_state, instruction_preview, max_side, chunk_mode, chunk_size, gpu_budget, no_time_limit],
outputs=[rows_state, gallery, table, autosave_md, remaining_state, step_panel, step_msg, progress_md]
)
step_next.click(
_step_next,
inputs=[remaining_state, rows_state, instruction_preview, max_side, chunk_size, gpu_budget, no_time_limit],
outputs=[rows_state, step_msg, step_panel, remaining_state, gallery, table, autosave_md, progress_md]
)
step_finish.click(_step_finish, inputs=None, outputs=[step_panel, step_msg, remaining_state])
table.change(sync_table_to_session, inputs=[table, rows_state], outputs=[rows_state, gallery, autosave_md])
export_csv_btn.click(
lambda tbl, ds: (export_csv_from_table(tbl, ds), gr.update(visible=True)),
inputs=[table, dataset_name], outputs=[csv_file, csv_file]
)
export_xlsx_btn.click(
lambda tbl, rows, px, ds: (export_excel_with_thumbs(tbl, rows or [], int(px), ds), gr.update(visible=True)),
inputs=[table, rows_state, excel_thumb_px, dataset_name], outputs=[xlsx_file, xlsx_file]
)
export_txt_btn.click(
lambda tbl, ds: (export_txt_zip(tbl, ds), gr.update(visible=True)),
inputs=[table, dataset_name], outputs=[txt_zip, txt_zip]
)
# ------------------------------
# 12) Launch
# ------------------------------
if __name__ == "__main__":
demo.queue(max_size=64).launch(
server_name="0.0.0.0",
server_port=int(os.getenv("PORT", "7860")),
ssr_mode=False,
debug=True,
show_error=True,
allowed_paths=[THUMB_CACHE, EXCEL_THUMB_DIR, TXT_EXPORT_DIR],
)
|