Spaces:
Running
on
Zero
Running
on
Zero
| # Multi-LoRA Image Editing Implementation (Simplified) | |
| ## Overview | |
| This implementation provides a simplified multi-LoRA (Low-Rank Adaptation) system for the Qwen-Image-Edit application, focusing on **Lightning LoRA always active as the base optimization** with only **Object Remover** as an additional LoRA for testing. | |
| ## Architecture | |
| ### Core Components | |
| 1. **LoRAManager** (`lora_manager.py`) | |
| - Centralized management of multiple LoRA adapters | |
| - Registry system for storing LoRA configurations | |
| - Dynamic loading and fusion capabilities | |
| - Memory management and cleanup | |
| 2. **LoRA Configuration** (`app.py`) | |
| - Centralized `LORA_CONFIG` dictionary | |
| - Lightning LoRA configured as always-loaded base | |
| - Simplified to Object Remover for focused testing | |
| 3. **Dynamic UI System** (`app.py`) | |
| - Conditional component visibility based on LoRA selection | |
| - Lightning LoRA status indication | |
| - Type-specific UI adaptations (edit vs base) | |
| - Real-time interface updates | |
| ## β‘ Lightning LoRA Always-On Architecture | |
| ### Core Principle | |
| **Lightning LoRA is always loaded as the base model** for fast 4-step generation, regardless of which other LoRA is selected. This provides: | |
| - **Consistent Performance**: Always-on 4-step generation | |
| - **Enhanced Speed**: Lightning's optimization applies to all operations | |
| - **Multi-LoRA Fusion**: Combine Lightning speed with Object Remover capabilities | |
| ### Implementation Details | |
| #### 1. Always-On Loading | |
| ```python | |
| # Lightning LoRA is loaded first and always remains active | |
| LIGHTNING_LORA_NAME = "Lightning (4-Step)" | |
| print(f"Loading always-active Lightning LoRA: {LIGHTNING_LORA_NAME}") | |
| lightning_lora_path = hf_hub_download( | |
| repo_id=lightning_config["repo_id"], | |
| filename=lightning_config["filename"] | |
| ) | |
| lora_manager.register_lora(LIGHTNING_LORA_NAME, lightning_lora_path, **lightning_config) | |
| lora_manager.configure_lora(LIGHTNING_LORA_NAME, { | |
| "description": lightning_config["description"], | |
| "is_base": True | |
| }) | |
| # Load Lightning LoRA and keep it always active | |
| lora_manager.load_lora(LIGHTNING_LORA_NAME) | |
| lora_manager.fuse_lora(LIGHTNING_LORA_NAME) | |
| ``` | |
| #### 2. Multi-LoRA Combination | |
| ```python | |
| def load_and_fuse_additional_lora(lora_name): | |
| """ | |
| Load an additional LoRA while keeping Lightning LoRA always active. | |
| This enables combining Lightning's speed with Object Remover capabilities. | |
| """ | |
| # Always keep Lightning LoRA loaded | |
| # Load additional LoRA without resetting to base state | |
| if config["method"] == "standard": | |
| print("Using standard loading method...") | |
| # Load additional LoRA without fusing (to preserve Lightning) | |
| pipe.load_lora_weights(lora_path, adapter_names=[lora_name]) | |
| # Set both adapters as active | |
| pipe.set_adapters([LIGHTNING_LORA_NAME, lora_name]) | |
| print(f"Lightning + {lora_name} now active.") | |
| ``` | |
| #### 3. Lightning Preservation in Inference | |
| ```python | |
| def infer(lora_name, ...): | |
| """Main inference function with Lightning always active""" | |
| # Load additional LoRA while keeping Lightning active | |
| load_and_fuse_lora(lora_name) | |
| print("--- Running Inference ---") | |
| print(f"LoRA: {lora_name} (with Lightning always active)") | |
| # Generate with Lightning + additional LoRA | |
| result_image = pipe( | |
| image=image_for_pipeline, | |
| prompt=final_prompt, | |
| num_inference_steps=int(num_inference_steps), | |
| # ... other parameters | |
| ).images[0] | |
| # Don't unfuse Lightning - keep it active for next inference | |
| if lora_name != LIGHTNING_LORA_NAME: | |
| pipe.disable_adapters() # Disable additional LoRA but keep Lightning | |
| ``` | |
| ## Simplified LoRA Configuration | |
| ### Current Supported LoRAs | |
| | LoRA Name | Type | Method | Always-On | Description | | |
| |-----------|------|--------|-----------|-------------| | |
| | **β‘ Lightning (4-Step)** | base | standard | β **Always** | Fast 4-step generation - always active | | |
| | **None** | edit | none | β | Base model with Lightning optimization | | |
| | **Object Remover** | edit | standard | β‘ Lightning+ | Removes objects from an image while maintaining background consistency | | |
| ### Lightning + Object Remover Combination | |
| **Lightning + Object Remover**: Fast object removal with 4-step generation optimization | |
| ### LoRA Type Classifications | |
| - **Base LoRA**: Lightning (always loaded, always active) | |
| - **Edit LoRAs**: Object Remover (requires input images, uses standard fusion) | |
| - **None**: Base model with Lightning optimization | |
| ## Key Features | |
| ### 1. Dynamic UI Components | |
| The system automatically adapts the user interface and shows Lightning status: | |
| ```python | |
| def on_lora_change(lora_name): | |
| """Dynamic UI component visibility handler""" | |
| config = LORA_CONFIG[lora_name] | |
| is_style_lora = config["type"] == "style" | |
| # Lightning LoRA info | |
| lightning_info = "β‘ **Lightning LoRA always active** - Fast 4-step generation enabled" | |
| return { | |
| lora_description: gr.Markdown(visible=True, value=f"**{lightning_info}** \n\n**Description:** {config['description']}"), | |
| input_image_box: gr.Image(visible=not is_style_lora, type="pil"), | |
| style_image_box: gr.Image(visible=is_style_lora, type="pil"), | |
| prompt_box: gr.Textbox(visible=(config["prompt_template"] != "change the face to face segmentation mask")) | |
| } | |
| ``` | |
| ### 2. Always-On Lightning Performance | |
| ```python | |
| # Lightning configuration as always-loaded base | |
| "Lightning (4-Step)": { | |
| "repo_id": "lightx2v/Qwen-Image-Lightning", | |
| "filename": "Qwen-Image-Lightning-4steps-V2.0.safetensors", | |
| "type": "base", | |
| "method": "standard", | |
| "always_load": True, | |
| "prompt_template": "{prompt}", | |
| "description": "Fast 4-step generation LoRA - always loaded as base optimization.", | |
| } | |
| ``` | |
| ### 3. Simplified Multi-LoRA Fusion | |
| - **Lightning Base**: Always loaded, always active | |
| - **Object Remover**: Loaded alongside Lightning using standard fusion | |
| - **None**: Lightning-only operation | |
| ### 4. Memory Management with Lightning | |
| - Lightning LoRA remains loaded throughout session | |
| - Object Remover LoRA loaded/unloaded as needed | |
| - GPU memory optimized for Lightning + one additional LoRA | |
| - Automatic cleanup of non-Lightning adapters | |
| ### 5. Prompt Template System | |
| Each LoRA has a custom prompt template (Lightning provides base 4-step generation): | |
| ```python | |
| "Object Remover": { | |
| "prompt_template": "Remove {prompt}", | |
| "type": "edit" | |
| } | |
| ``` | |
| ## Usage | |
| ### Basic Usage with Always-On Lightning | |
| 1. **Lightning is Always Active**: No selection needed - Lightning runs all operations | |
| 2. **Select Additional LoRA**: Choose "Object Remover" to combine with Lightning | |
| 3. **Upload Images**: Upload input image to edit | |
| 4. **Enter Prompt**: Describe the object to remove | |
| 5. **Configure Settings**: Adjust advanced parameters (4-step generation always enabled) | |
| 6. **Generate**: Click "Generate!" to process with Lightning optimization | |
| ### Object Remover Usage | |
| 1. **Select "Object Remover"** from the dropdown | |
| 2. **Upload Input Image**: The image containing the object to remove | |
| 3. **Enter Prompt**: Describe the object to remove (e.g., "person", "car", "tree") | |
| 4. **Generate**: Lightning + Object Remover will remove the specified object | |
| ### Advanced Configuration | |
| #### Adding New LoRAs (with Lightning Always-On) | |
| 1. **Add to LORA_CONFIG**: | |
| ```python | |
| "Custom LoRA": { | |
| "repo_id": "username/custom-lora", | |
| "filename": "custom.safetensors", | |
| "type": "edit", # or "style" | |
| "method": "standard", # or "manual_fuse" | |
| "prompt_template": "Custom instruction: {prompt}", | |
| "description": "Description of the LoRA capabilities" | |
| } | |
| ``` | |
| 2. **Register with LoRAManager**: | |
| ```python | |
| lora_path = hf_hub_download(repo_id=config["repo_id"], filename=config["filename"]) | |
| lora_manager.register_lora("Custom LoRA", lora_path, **config) | |
| ``` | |
| 3. **Lightning + Custom LoRA**: Automatically combines with always-on Lightning | |
| ## Technical Implementation | |
| ### Lightning Always-On Process | |
| 1. **Initialization**: Load Lightning LoRA first | |
| 2. **Fusion**: Fuse Lightning weights permanently | |
| 3. **Persistence**: Keep Lightning active throughout session | |
| 4. **Combination**: Load Object Remover alongside Lightning | |
| 5. **Preservation**: Never unload Lightning LoRA | |
| ### Lightning Loading Process | |
| ```python | |
| def load_and_fuse_lora(lora_name): | |
| """Legacy function for backward compatibility""" | |
| if lora_name == LIGHTNING_LORA_NAME: | |
| # Lightning is already loaded, just ensure it's active | |
| print("Lightning LoRA is already active.") | |
| pipe.set_adapters([LIGHTNING_LORA_NAME]) | |
| return | |
| load_and_fuse_additional_lora(lora_name) | |
| ``` | |
| ### Memory Management with Lightning | |
| ```python | |
| # Don't unfuse Lightning - keep it active for next inference | |
| if lora_name != LIGHTNING_LORA_NAME: | |
| pipe.disable_adapters() # Disable additional LoRA but keep Lightning | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| ``` | |
| ## Testing and Validation | |
| ### Validation Scripts | |
| - **test_lora_logic.py**: Validates implementation logic without dependencies | |
| - **test_lightning_always_on.py**: Validates Lightning always-on functionality | |
| - **test_lora_implementation.py**: Full integration testing (requires PyTorch) | |
| ### Lightning Always-On Test Coverage | |
| β **Lightning LoRA configured as always-loaded base** | |
| β **Lightning LoRA loaded and fused on startup** | |
| β **Inference preserves Lightning LoRA state** | |
| β **Multi-LoRA combination supported** | |
| β **UI indicates Lightning always active** | |
| β **Proper loading sequence implemented** | |
| ### Object Remover Testing | |
| β **Object Remover loads alongside Lightning** | |
| β **Lightning + Object Remover combination works** | |
| β **Prompt template "Remove {prompt}" functions correctly** | |
| β **Memory management for Lightning + Object Remover** | |
| ## Performance Considerations | |
| ### Lightning Always-On Benefits | |
| - **Consistent Speed**: All operations use 4-step generation | |
| - **Reduced Latency**: No loading time for Lightning between requests | |
| - **Enhanced Performance**: Lightning optimization applies to Object Remover | |
| - **Memory Efficiency**: Lightning stays in memory, Object Remover loaded as needed | |
| ### Speed Optimization | |
| - **4-Step Generation**: Lightning provides ultra-fast inference | |
| - **AOT Compilation**: Ahead-of-time compilation with Lightning active | |
| - **Adapter Combination**: Lightning + Object Remover for optimal results | |
| - **Optimized Attention Processors**: FA3 attention with Lightning | |
| ### Memory Optimization | |
| - Lightning LoRA always in memory (base memory usage) | |
| - Object Remover LoRA loaded on-demand | |
| - Efficient adapter switching | |
| - GPU memory management for multiple adapters | |
| ## Troubleshooting | |
| ### Common Issues | |
| 1. **Lightning Not Loading** | |
| - Check HuggingFace Hub connectivity for Lightning repo | |
| - Verify `lightx2v/Qwen-Image-Lightning` repository exists | |
| - Ensure sufficient GPU memory for Lightning LoRA | |
| 2. **Slow Performance (Lightning Not Active)** | |
| - Check Lightning LoRA is loaded: Look for "Lightning LoRA is already active" | |
| - Verify adapter status: `pipe.get_active_adapters()` | |
| - Ensure Lightning is not being disabled | |
| 3. **Object Remover Issues** | |
| - Check Object Remover loading: Look for "Lightning + Object Remover now active" | |
| - Verify prompt format: Should be "Remove {object}" | |
| - Monitor memory usage for Lightning + Object Remover | |
| ### Debug Mode | |
| Enable debug logging to see Lightning always-on status: | |
| ```python | |
| import logging | |
| logging.basicConfig(level=logging.DEBUG) | |
| # Check Lightning status | |
| print(f"Lightning active: {LIGHTNING_LORA_NAME in pipe.get_active_adapters()}") | |
| print(f"All active adapters: {pipe.get_active_adapters()}") | |
| ``` | |
| ## Future Enhancements | |
| ### Planned Features | |
| 1. **Additional LoRAs**: Add more LoRAs after successful Object Remover testing | |
| 2. **LoRA Blending**: Advanced blending of multiple LoRAs with Lightning | |
| 3. **Lightning Optimization**: Dynamic Lightning parameter adjustment | |
| 4. **Performance Monitoring**: Real-time Lightning performance metrics | |
| 5. **Batch Processing**: Process multiple images with Lightning always-on | |
| ### Extension Points | |
| - Custom Lightning optimization strategies | |
| - Multiple base LoRAs (beyond Lightning) | |
| - Advanced multi-LoRA combination algorithms | |
| - Lightning performance profiling | |
| ## Simplified Configuration Benefits | |
| ### Focused Testing | |
| - **Reduced Complexity**: Only Lightning + Object Remover to test | |
| - **Clear Validation**: Easy to verify Lightning always-on functionality | |
| - **Debugging**: Simplified troubleshooting with fewer variables | |
| - **Performance**: Clear performance benefits of Lightning always-on | |
| ### Risk Mitigation | |
| - **Gradual Rollout**: Test one LoRA before adding more | |
| - **Validation**: Ensure Lightning + LoRA combination works correctly | |
| - **Memory Management**: Verify memory usage with Lightning + one LoRA | |
| - **User Experience**: Validate simplified UI with fewer options | |
| ## References | |
| - [Qwen-Image-Edit Model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) | |
| - [Lightning LoRA Repository](https://huggingface.co/lightx2v/Qwen-Image-Lightning) | |
| - [Object Remover LoRA Repository](https://huggingface.co/valiantcat/Qwen-Image-Edit-Remover-General-LoRA) | |
| - [Diffusers LoRA Documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) | |
| - [PEFT Library](https://github.com/huggingface/peft) | |
| - [HuggingFace Spaces Pattern](https://huggingface.co/spaces) | |
| ## License | |
| This implementation follows the same license as the original Qwen-Image-Edit project. |