mcp-nlp-analytics / README.md
RReyesp's picture
chore: configure HF static space entrypoint
e73d316
|
raw
history blame
4.03 kB
metadata
title: MCP NLP Analytics
emoji: πŸ“Š
colorFrom: indigo
colorTo: blue
sdk: static
app_file: index.html
pinned: false

Sentiment Evolution Tracker – MCP Monitoring Stack

Sentiment Evolution Tracker is an enterprise-ready monitoring stack that runs as a Model Context Protocol (MCP) server. It combines local sentiment analytics, churn prediction, alerting, and reporting, and can operate standalone or alongside Claude Desktop as an intelligent assistant.

Why This Exists

Traditional β€œuse Claude once and move on” workflows do not keep historical context, trigger alerts, or generate portfolio-level insights. Sentiment Evolution Tracker solves that by providing:

  • Automated trend detection (RISING / DECLINING / STABLE)
  • Churn probability scoring with configurable thresholds
  • Persistent customer histories in SQLite
  • Real-time alerts when risk exceeds 70%
  • ASCII and HTML visualizations for demos and stakeholders
  • Seven MCP tools that Claude (or any MCP-compatible LLM) can invoke on demand

Installation

cd mcp-nlp-server
pip install -r requirements.txt
python -m textblob.download_corpora
python -m nltk.downloader punkt averaged_perceptron_tagger

Daily Operations

  • python init_db.py – rebuilds the database from scratch (reset option)
  • python tools\populate_demo_data.py – loads deterministic demo customers
  • python tools\dashboard.py – terminal dashboard (Ctrl+C to exit)
  • python tools\generate_report.py – creates data/reporte_clientes.html
  • python src\mcp_server.py – launch the MCP server for Claude Desktop

MCP Tool Suite

Tool Purpose
analyze_sentiment_evolution Calculates sentiment trajectory for a set of messages
detect_risk_signals Flags phrases that correlate with churn or dissatisfaction
predict_next_action Forecasts CHURN / ESCALATION / RESOLUTION outcomes
get_customer_history Retrieves full timeline, sentiment, and alerts for a customer
get_high_risk_customers Returns customers whose churn risk is above a threshold
get_database_statistics Portfolio-level KPIs (customers, alerts, sentiment mean)
save_analysis Persists a custom analysis entry with full metadata

Data Model (SQLite)

  • customer_profiles – customer metadata, lifetime sentiment, churn risk, timestamps
  • conversations – every analysis entry, trend, predicted action, confidence
  • risk_alerts – generated alerts with severity, notes, and resolution state

Database files live in data/sentiment_analysis.db; scripts automatically create the directory if needed.

Claude Desktop Integration

config/claude_desktop_config.json registers the server:

{
  "mcpServers": {
    "sentiment-tracker": {
      "command": "python",
      "args": ["src/mcp_server.py"],
      "cwd": "C:/Users/Ruben Reyes/Desktop/MCP_1stHF/mcp-nlp-server"
    }
  }
}

Restart Claude Desktop after editing the file. Once connected, the seven tools above appear automatically and can be invoked using natural language prompts.

Documentation Map

  • docs/QUICK_START.md – five-minute functional checklist
  • docs/ARCHITECTURE.md – diagrams, module responsibilities, data flow
  • docs/HOW_TO_SAVE_ANALYSIS.md – practical guide for the save_analysis tool
  • docs/EXECUTIVE_SUMMARY.md – executive briefing for stakeholders
  • docs/CHECKLIST_FINAL.md – submission readiness checklist

Tech Stack

  • Python 3.10+
  • MCP SDK 0.1+
  • SQLite (standard library)
  • TextBlob 0.17.x + NLTK 3.8.x
  • Chart.js for optional HTML visualizations

Status

  • βœ… Production-style folder layout
  • βœ… Deterministic demo dataset for the hackathon video
  • βœ… Comprehensive English documentation
  • βœ… Tests for the save_analysis workflow (tests/test_save_analysis.py)

Run python tools\dashboard.py or open the generated HTML report to verify data before your demo, then start the MCP server and launch Claude Desktop to show the agentic workflow in real time.