FastAPI-Backend-Models / mcp /n8n_routes.py
malek-messaoudii
update mcp part
83c5f9d
raw
history blame
13.1 kB
"""
Routes FastAPI pour intégration n8n avec MCP
À ajouter dans votre app.py principal
"""
from fastapi import APIRouter, HTTPException, BackgroundTasks, UploadFile, File
from pydantic import BaseModel
from typing import Dict, Any, Optional, List
import logging
from datetime import datetime
logger = logging.getLogger(__name__)
# Router pour n8n
n8n_router = APIRouter(prefix="/n8n", tags=["n8n"])
# ==================== MODELS ====================
class N8NToolRequest(BaseModel):
"""Request model pour appels n8n"""
tool_name: str
arguments: Dict[str, Any]
context: Optional[Dict[str, Any]] = None
async_callback: Optional[str] = None # URL pour callback asynchrone
class Config:
json_schema_extra = {
"example": {
"tool_name": "predict_stance",
"arguments": {
"topic": "climate change",
"argument": "We need renewable energy"
},
"context": {
"session_id": "session_123",
"user_id": "user_456"
}
}
}
class N8NBatchRequest(BaseModel):
"""Request pour traitement batch"""
tool_name: str
items: List[Dict[str, Any]]
batch_size: int = 10
parallel: bool = False
class Config:
json_schema_extra = {
"example": {
"tool_name": "predict_stance",
"items": [
{"topic": "AI", "argument": "AI will help humanity"},
{"topic": "AI", "argument": "AI is dangerous"}
],
"batch_size": 10
}
}
class N8NPipelineRequest(BaseModel):
"""Request pour pipeline complexe"""
pipeline_name: str
input_data: Dict[str, Any]
steps: List[Dict[str, Any]]
class Config:
json_schema_extra = {
"example": {
"pipeline_name": "debate_analysis",
"input_data": {
"topic": "climate change",
"text": "We must act now"
},
"steps": [
{"tool": "predict_stance", "output_key": "stance"},
{"tool": "predict_kpa", "use_previous": True}
]
}
}
class N8NResponse(BaseModel):
"""Response standardisée pour n8n"""
success: bool
data: Optional[Dict[str, Any]] = None
error: Optional[str] = None
execution_time: float
timestamp: datetime = datetime.now()
# ==================== ENDPOINTS ====================
@n8n_router.post("/execute", response_model=N8NResponse)
async def execute_tool(request: N8NToolRequest):
"""
Endpoint principal pour exécuter un outil MCP depuis n8n
"""
import time
start_time = time.time()
try:
from mcp.server import MCPServer
from mcp import server # Importer votre instance MCP
# Exécuter l'outil
result = await server.call_tool(
tool_name=request.tool_name,
arguments=request.arguments
)
# Ajouter le contexte si fourni
if request.context:
result["context"] = request.context
execution_time = time.time() - start_time
return N8NResponse(
success=True,
data=result,
execution_time=execution_time
)
except Exception as e:
logger.error(f"Tool execution failed: {str(e)}")
execution_time = time.time() - start_time
return N8NResponse(
success=False,
error=str(e),
execution_time=execution_time
)
@n8n_router.post("/batch", response_model=N8NResponse)
async def batch_execute(request: N8NBatchRequest):
"""
Endpoint pour traitement batch depuis n8n
"""
import time
import asyncio
start_time = time.time()
try:
from mcp import server
results = []
# Traitement séquentiel ou parallèle
if request.parallel:
# Traitement parallèle
tasks = []
for item in request.items:
task = server.call_tool(
tool_name=request.tool_name,
arguments=item
)
tasks.append(task)
results = await asyncio.gather(*tasks, return_exceptions=True)
else:
# Traitement séquentiel par batch
for i in range(0, len(request.items), request.batch_size):
batch = request.items[i:i + request.batch_size]
for item in batch:
try:
result = await server.call_tool(
tool_name=request.tool_name,
arguments=item
)
results.append(result)
except Exception as e:
results.append({"error": str(e), "item": item})
execution_time = time.time() - start_time
return N8NResponse(
success=True,
data={
"results": results,
"total": len(results),
"successful": sum(1 for r in results if not isinstance(r, Exception) and "error" not in r),
"failed": sum(1 for r in results if isinstance(r, Exception) or "error" in r)
},
execution_time=execution_time
)
except Exception as e:
logger.error(f"Batch execution failed: {str(e)}")
execution_time = time.time() - start_time
return N8NResponse(
success=False,
error=str(e),
execution_time=execution_time
)
@n8n_router.post("/pipeline", response_model=N8NResponse)
async def execute_pipeline(request: N8NPipelineRequest):
"""
Endpoint pour exécuter un pipeline multi-étapes
"""
import time
start_time = time.time()
try:
from mcp import server
pipeline_context = {"input": request.input_data}
results = {}
for step in request.steps:
tool_name = step["tool"]
output_key = step.get("output_key", tool_name)
use_previous = step.get("use_previous", False)
# Préparer les arguments
if use_previous:
# Utiliser le résultat de l'étape précédente
arguments = {**request.input_data, **results}
else:
arguments = step.get("arguments", request.input_data)
# Exécuter l'étape
result = await server.call_tool(
tool_name=tool_name,
arguments=arguments
)
results[output_key] = result
pipeline_context[output_key] = result
execution_time = time.time() - start_time
return N8NResponse(
success=True,
data={
"pipeline": request.pipeline_name,
"results": results,
"context": pipeline_context
},
execution_time=execution_time
)
except Exception as e:
logger.error(f"Pipeline execution failed: {str(e)}")
execution_time = time.time() - start_time
return N8NResponse(
success=False,
error=str(e),
execution_time=execution_time
)
@n8n_router.post("/voice-pipeline")
async def voice_debate_pipeline(
audio: UploadFile = File(...),
topic: str = None,
session_id: str = None
):
"""
Pipeline complet : Audio → STT → Stance → KPA → Argument Generation → TTS
Optimisé pour n8n
"""
import time
import tempfile
import os
start_time = time.time()
try:
from mcp import server
from services.stt_service import transcribe_audio
from services.tts_service import text_to_speech
# 1. Sauvegarder l'audio temporairement
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
content = await audio.read()
tmp.write(content)
tmp_path = tmp.name
try:
# 2. Speech-to-Text
transcription = await transcribe_audio(tmp_path)
user_text = transcription.get("text", "")
# 3. Stance Detection
stance_result = await server.call_tool(
"predict_stance",
{"topic": topic, "argument": user_text}
)
# 4. KPA Matching (optionnel)
# kpa_result = await mcp_server.call_tool(...)
# 5. Generate Counter-Argument
opposite_stance = "CON" if stance_result["predicted_stance"] == "PRO" else "PRO"
counter_arg_result = await server.call_tool(
"generate_argument",
{
"prompt": f"Generate a {opposite_stance} argument about {topic}",
"context": f"User said: {user_text}",
"stance": opposite_stance
}
)
# 6. Text-to-Speech du contre-argument
tts_audio_path = await text_to_speech(
counter_arg_result["generated_argument"]
)
execution_time = time.time() - start_time
return N8NResponse(
success=True,
data={
"transcription": user_text,
"stance_analysis": stance_result,
"counter_argument": counter_arg_result,
"audio_response_path": tts_audio_path,
"session_id": session_id
},
execution_time=execution_time
)
finally:
# Nettoyer le fichier temporaire
if os.path.exists(tmp_path):
os.remove(tmp_path)
except Exception as e:
logger.error(f"Voice pipeline failed: {str(e)}")
return N8NResponse(
success=False,
error=str(e),
execution_time=time.time() - start_time
)
@n8n_router.get("/tools")
async def list_tools():
"""
Liste tous les outils disponibles (format n8n-friendly)
"""
try:
from mcp import server
tools = await server.list_tools()
return {
"success": True,
"tools": tools,
"total": len(tools)
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@n8n_router.get("/resources")
async def list_resources():
"""
Liste toutes les ressources disponibles (format n8n-friendly)
"""
try:
from mcp import server
resources = await server.list_resources()
return {
"success": True,
"resources": resources,
"total": len(resources)
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@n8n_router.get("/health")
async def health_check():
"""
Health check pour n8n monitoring
"""
from services.stance_model_manager import stance_model_manager
from services.label_model_manager import kpa_model_manager
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"models": {
"stance": stance_model_manager.model_loaded if stance_model_manager else False,
"kpa": kpa_model_manager.model_loaded if kpa_model_manager else False
},
"services": {
"stt": True, # Vérifier si GROQ_API_KEY existe
"tts": True,
"chat": True
}
}
# ==================== WEBHOOKS ====================
@n8n_router.post("/webhook/debate-result")
async def webhook_debate_result(data: Dict[str, Any], background_tasks: BackgroundTasks):
"""
Webhook pour recevoir les résultats de débat depuis n8n
Peut être utilisé pour stocker, notifier, etc.
"""
logger.info(f"Received debate result webhook: {data}")
# Traiter en arrière-plan
background_tasks.add_task(process_debate_result, data)
return {"status": "received", "message": "Processing in background"}
async def process_debate_result(data: Dict[str, Any]):
"""
Traiter les résultats de débat en arrière-plan
"""
# TODO: Implémenter votre logique
# - Sauvegarder dans DB
# - Envoyer des notifications
# - Mettre à jour des métriques
logger.info(f"Processing debate result: {data}")
# ==================== EXPORT ====================
def register_n8n_routes(app):
"""
Enregistrer les routes n8n dans l'application FastAPI
"""
app.include_router(n8n_router)
logger.info("n8n routes registered successfully")