|
|
"""Model manager for stance detection model""" |
|
|
|
|
|
import os |
|
|
import torch |
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
import logging |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
class StanceModelManager: |
|
|
"""Manages stance detection model loading and predictions""" |
|
|
|
|
|
def __init__(self): |
|
|
self.model = None |
|
|
self.tokenizer = None |
|
|
self.device = None |
|
|
self.model_loaded = False |
|
|
|
|
|
def load_model(self, model_id: str, api_key: str = None): |
|
|
"""Load model and tokenizer from Hugging Face""" |
|
|
if self.model_loaded: |
|
|
logger.info("Stance model already loaded") |
|
|
return |
|
|
|
|
|
try: |
|
|
logger.info(f"Loading stance model from Hugging Face: {model_id}") |
|
|
|
|
|
|
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
logger.info(f"Using device: {self.device}") |
|
|
|
|
|
|
|
|
token = api_key if api_key else None |
|
|
|
|
|
|
|
|
logger.info("Loading tokenizer...") |
|
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
|
model_id, |
|
|
token=token, |
|
|
trust_remote_code=True |
|
|
) |
|
|
|
|
|
logger.info("Loading model...") |
|
|
self.model = AutoModelForSequenceClassification.from_pretrained( |
|
|
model_id, |
|
|
token=token, |
|
|
trust_remote_code=True |
|
|
) |
|
|
self.model.to(self.device) |
|
|
self.model.eval() |
|
|
|
|
|
self.model_loaded = True |
|
|
logger.info("✓ Stance model loaded successfully from Hugging Face!") |
|
|
|
|
|
except Exception as e: |
|
|
logger.error(f"Error loading stance model: {str(e)}") |
|
|
raise RuntimeError(f"Failed to load stance model: {str(e)}") |
|
|
|
|
|
def predict(self, topic: str, argument: str) -> dict: |
|
|
"""Make a single stance prediction""" |
|
|
if not self.model_loaded: |
|
|
raise RuntimeError("Stance model not loaded") |
|
|
|
|
|
|
|
|
text = f"Topic: {topic} [SEP] Argument: {argument}" |
|
|
|
|
|
|
|
|
inputs = self.tokenizer( |
|
|
text, |
|
|
return_tensors="pt", |
|
|
truncation=True, |
|
|
max_length=512, |
|
|
padding=True |
|
|
).to(self.device) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = self.model(**inputs) |
|
|
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) |
|
|
predicted_class = torch.argmax(probabilities, dim=-1).item() |
|
|
|
|
|
|
|
|
prob_con = probabilities[0][0].item() |
|
|
prob_pro = probabilities[0][1].item() |
|
|
|
|
|
|
|
|
stance = "PRO" if predicted_class == 1 else "CON" |
|
|
confidence = probabilities[0][predicted_class].item() |
|
|
|
|
|
return { |
|
|
"predicted_stance": stance, |
|
|
"confidence": confidence, |
|
|
"probability_con": prob_con, |
|
|
"probability_pro": prob_pro |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
stance_model_manager = StanceModelManager() |
|
|
|
|
|
|