FastAPI-Backend-Models / services /label_model_manager.py
malek-messaoudii
Update training script and model files
cfbe56e
"""Model manager for keypoint–argument matching model"""
import os
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import logging
logger = logging.getLogger(__name__)
class KpaModelManager:
"""Manages loading and inference for keypoint matching model"""
def __init__(self):
self.model = None
self.tokenizer = None
self.device = None
self.model_loaded = False
self.max_length = 256
self.model_id = None
def load_model(self, model_id: str, api_key: str = None):
"""Load complete model and tokenizer directly from Hugging Face"""
if self.model_loaded:
logger.info("KPA model already loaded")
return
try:
# Debug: Vérifier les paramètres d'entrée
logger.info(f"=== DEBUG KPA MODEL LOADING ===")
logger.info(f"model_id reçu: {model_id}")
logger.info(f"model_id type: {type(model_id)}")
logger.info(f"api_key présent: {api_key is not None}")
if model_id is None:
raise ValueError("model_id cannot be None - check your .env file")
logger.info(f"Loading KPA model from Hugging Face: {model_id}")
# Determine device
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
logger.info(f"Using device: {self.device}")
# Store model ID
self.model_id = model_id
# Prepare token for authentication if API key is provided
token = api_key if api_key else None
# Load tokenizer and model directly from Hugging Face
logger.info("Step 1: Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(
model_id,
token=token,
trust_remote_code=True
)
logger.info("✓ Tokenizer loaded successfully")
logger.info("Step 2: Loading model...")
self.model = AutoModelForSequenceClassification.from_pretrained(
model_id,
token=token,
trust_remote_code=True
)
logger.info("✓ Model architecture loaded")
self.model.to(self.device)
self.model.eval()
logger.info("✓ Model moved to device and set to eval mode")
self.model_loaded = True
logger.info("✓ KPA model loaded successfully from Hugging Face!")
logger.info(f"=== KPA MODEL LOADING COMPLETE ===")
except Exception as e:
logger.error(f"❌ Error loading KPA model: {str(e)}")
logger.error(f"❌ Model ID was: {model_id}")
logger.error(f"❌ API Key present: {api_key is not None}")
raise RuntimeError(f"Failed to load KPA model: {str(e)}")
def predict(self, argument: str, key_point: str) -> dict:
"""Run a prediction for (argument, key_point)"""
if not self.model_loaded:
raise RuntimeError("KPA model not loaded")
try:
# Tokenize input
encoding = self.tokenizer(
argument,
key_point,
truncation=True,
padding="max_length",
max_length=self.max_length,
return_tensors="pt"
).to(self.device)
# Forward pass
with torch.no_grad():
outputs = self.model(**encoding)
logits = outputs.logits
probabilities = torch.softmax(logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
confidence = probabilities[0][predicted_class].item()
return {
"prediction": predicted_class,
"confidence": confidence,
"label": "apparie" if predicted_class == 1 else "non_apparie",
"probabilities": {
"non_apparie": probabilities[0][0].item(),
"apparie": probabilities[0][1].item(),
},
}
except Exception as e:
logger.error(f"Error during prediction: {str(e)}")
raise RuntimeError(f"KPA prediction failed: {str(e)}")
def get_model_info(self):
"""Get model information"""
if not self.model_loaded:
return {"loaded": False}
return {
"model_name": self.model_id,
"device": str(self.device),
"max_length": self.max_length,
"num_labels": 2,
"loaded": self.model_loaded
}
# Initialize singleton instance
kpa_model_manager = KpaModelManager()