malek-messaoudii
commited on
Commit
·
cfbe56e
1
Parent(s):
d9d9974
Update training script and model files
Browse files
services/__init__.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
"""Services for business logic and external integrations"""
|
| 2 |
|
| 3 |
from .stance_model_manager import StanceModelManager, stance_model_manager
|
| 4 |
-
from .
|
| 5 |
|
| 6 |
__all__ = [
|
| 7 |
"StanceModelManager",
|
|
|
|
| 1 |
"""Services for business logic and external integrations"""
|
| 2 |
|
| 3 |
from .stance_model_manager import StanceModelManager, stance_model_manager
|
| 4 |
+
from .label_model_manager import KpaModelManager, label_model_manager
|
| 5 |
|
| 6 |
__all__ = [
|
| 7 |
"StanceModelManager",
|
services/{label_model_manage.py → label_model_manager.py}
RENAMED
|
@@ -26,6 +26,15 @@ class KpaModelManager:
|
|
| 26 |
return
|
| 27 |
|
| 28 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
logger.info(f"Loading KPA model from Hugging Face: {model_id}")
|
| 30 |
|
| 31 |
# Determine device
|
|
@@ -39,27 +48,34 @@ class KpaModelManager:
|
|
| 39 |
token = api_key if api_key else None
|
| 40 |
|
| 41 |
# Load tokenizer and model directly from Hugging Face
|
| 42 |
-
logger.info("Loading tokenizer...")
|
| 43 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 44 |
model_id,
|
| 45 |
token=token,
|
| 46 |
trust_remote_code=True
|
| 47 |
)
|
|
|
|
| 48 |
|
| 49 |
-
logger.info("Loading model...")
|
| 50 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 51 |
model_id,
|
| 52 |
token=token,
|
| 53 |
trust_remote_code=True
|
| 54 |
)
|
|
|
|
|
|
|
| 55 |
self.model.to(self.device)
|
| 56 |
self.model.eval()
|
|
|
|
| 57 |
|
| 58 |
self.model_loaded = True
|
| 59 |
logger.info("✓ KPA model loaded successfully from Hugging Face!")
|
|
|
|
| 60 |
|
| 61 |
except Exception as e:
|
| 62 |
-
logger.error(f"Error loading KPA model: {str(e)}")
|
|
|
|
|
|
|
| 63 |
raise RuntimeError(f"Failed to load KPA model: {str(e)}")
|
| 64 |
|
| 65 |
def predict(self, argument: str, key_point: str) -> dict:
|
|
|
|
| 26 |
return
|
| 27 |
|
| 28 |
try:
|
| 29 |
+
# Debug: Vérifier les paramètres d'entrée
|
| 30 |
+
logger.info(f"=== DEBUG KPA MODEL LOADING ===")
|
| 31 |
+
logger.info(f"model_id reçu: {model_id}")
|
| 32 |
+
logger.info(f"model_id type: {type(model_id)}")
|
| 33 |
+
logger.info(f"api_key présent: {api_key is not None}")
|
| 34 |
+
|
| 35 |
+
if model_id is None:
|
| 36 |
+
raise ValueError("model_id cannot be None - check your .env file")
|
| 37 |
+
|
| 38 |
logger.info(f"Loading KPA model from Hugging Face: {model_id}")
|
| 39 |
|
| 40 |
# Determine device
|
|
|
|
| 48 |
token = api_key if api_key else None
|
| 49 |
|
| 50 |
# Load tokenizer and model directly from Hugging Face
|
| 51 |
+
logger.info("Step 1: Loading tokenizer...")
|
| 52 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 53 |
model_id,
|
| 54 |
token=token,
|
| 55 |
trust_remote_code=True
|
| 56 |
)
|
| 57 |
+
logger.info("✓ Tokenizer loaded successfully")
|
| 58 |
|
| 59 |
+
logger.info("Step 2: Loading model...")
|
| 60 |
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 61 |
model_id,
|
| 62 |
token=token,
|
| 63 |
trust_remote_code=True
|
| 64 |
)
|
| 65 |
+
logger.info("✓ Model architecture loaded")
|
| 66 |
+
|
| 67 |
self.model.to(self.device)
|
| 68 |
self.model.eval()
|
| 69 |
+
logger.info("✓ Model moved to device and set to eval mode")
|
| 70 |
|
| 71 |
self.model_loaded = True
|
| 72 |
logger.info("✓ KPA model loaded successfully from Hugging Face!")
|
| 73 |
+
logger.info(f"=== KPA MODEL LOADING COMPLETE ===")
|
| 74 |
|
| 75 |
except Exception as e:
|
| 76 |
+
logger.error(f"❌ Error loading KPA model: {str(e)}")
|
| 77 |
+
logger.error(f"❌ Model ID was: {model_id}")
|
| 78 |
+
logger.error(f"❌ API Key present: {api_key is not None}")
|
| 79 |
raise RuntimeError(f"Failed to load KPA model: {str(e)}")
|
| 80 |
|
| 81 |
def predict(self, argument: str, key_point: str) -> dict:
|