malek-messaoudii commited on
Commit
cfbe56e
·
1 Parent(s): d9d9974

Update training script and model files

Browse files
services/__init__.py CHANGED
@@ -1,7 +1,7 @@
1
  """Services for business logic and external integrations"""
2
 
3
  from .stance_model_manager import StanceModelManager, stance_model_manager
4
- from .label_model_manage import KpaModelManager, kpa_model_manager
5
 
6
  __all__ = [
7
  "StanceModelManager",
 
1
  """Services for business logic and external integrations"""
2
 
3
  from .stance_model_manager import StanceModelManager, stance_model_manager
4
+ from .label_model_manager import KpaModelManager, label_model_manager
5
 
6
  __all__ = [
7
  "StanceModelManager",
services/{label_model_manage.py → label_model_manager.py} RENAMED
@@ -26,6 +26,15 @@ class KpaModelManager:
26
  return
27
 
28
  try:
 
 
 
 
 
 
 
 
 
29
  logger.info(f"Loading KPA model from Hugging Face: {model_id}")
30
 
31
  # Determine device
@@ -39,27 +48,34 @@ class KpaModelManager:
39
  token = api_key if api_key else None
40
 
41
  # Load tokenizer and model directly from Hugging Face
42
- logger.info("Loading tokenizer...")
43
  self.tokenizer = AutoTokenizer.from_pretrained(
44
  model_id,
45
  token=token,
46
  trust_remote_code=True
47
  )
 
48
 
49
- logger.info("Loading model...")
50
  self.model = AutoModelForSequenceClassification.from_pretrained(
51
  model_id,
52
  token=token,
53
  trust_remote_code=True
54
  )
 
 
55
  self.model.to(self.device)
56
  self.model.eval()
 
57
 
58
  self.model_loaded = True
59
  logger.info("✓ KPA model loaded successfully from Hugging Face!")
 
60
 
61
  except Exception as e:
62
- logger.error(f"Error loading KPA model: {str(e)}")
 
 
63
  raise RuntimeError(f"Failed to load KPA model: {str(e)}")
64
 
65
  def predict(self, argument: str, key_point: str) -> dict:
 
26
  return
27
 
28
  try:
29
+ # Debug: Vérifier les paramètres d'entrée
30
+ logger.info(f"=== DEBUG KPA MODEL LOADING ===")
31
+ logger.info(f"model_id reçu: {model_id}")
32
+ logger.info(f"model_id type: {type(model_id)}")
33
+ logger.info(f"api_key présent: {api_key is not None}")
34
+
35
+ if model_id is None:
36
+ raise ValueError("model_id cannot be None - check your .env file")
37
+
38
  logger.info(f"Loading KPA model from Hugging Face: {model_id}")
39
 
40
  # Determine device
 
48
  token = api_key if api_key else None
49
 
50
  # Load tokenizer and model directly from Hugging Face
51
+ logger.info("Step 1: Loading tokenizer...")
52
  self.tokenizer = AutoTokenizer.from_pretrained(
53
  model_id,
54
  token=token,
55
  trust_remote_code=True
56
  )
57
+ logger.info("✓ Tokenizer loaded successfully")
58
 
59
+ logger.info("Step 2: Loading model...")
60
  self.model = AutoModelForSequenceClassification.from_pretrained(
61
  model_id,
62
  token=token,
63
  trust_remote_code=True
64
  )
65
+ logger.info("✓ Model architecture loaded")
66
+
67
  self.model.to(self.device)
68
  self.model.eval()
69
+ logger.info("✓ Model moved to device and set to eval mode")
70
 
71
  self.model_loaded = True
72
  logger.info("✓ KPA model loaded successfully from Hugging Face!")
73
+ logger.info(f"=== KPA MODEL LOADING COMPLETE ===")
74
 
75
  except Exception as e:
76
+ logger.error(f"Error loading KPA model: {str(e)}")
77
+ logger.error(f"❌ Model ID was: {model_id}")
78
+ logger.error(f"❌ API Key present: {api_key is not None}")
79
  raise RuntimeError(f"Failed to load KPA model: {str(e)}")
80
 
81
  def predict(self, argument: str, key_point: str) -> dict: