Axion / diffusion.py
Dhenenjay's picture
Upload diffusion.py with huggingface_hub
d52c538 verified
import math
import torch
from torch import device, nn, einsum
import torch.nn.functional as F
from inspect import isfunction
from functools import partial
import numpy as np
from tqdm import tqdm
def _warmup_beta(linear_start, linear_end, n_timestep, warmup_frac):
betas = linear_end * np.ones(n_timestep, dtype=np.float64)
warmup_time = int(n_timestep * warmup_frac)
betas[:warmup_time] = np.linspace(
linear_start, linear_end, warmup_time, dtype=np.float64)
return betas
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
if schedule == 'quad':
betas = np.linspace(linear_start ** 0.5, linear_end ** 0.5,
n_timestep, dtype=np.float64) ** 2
elif schedule == 'linear':
betas = np.linspace(linear_start, linear_end,
n_timestep, dtype=np.float64)
elif schedule == 'warmup10':
betas = _warmup_beta(linear_start, linear_end,
n_timestep, 0.1)
elif schedule == 'warmup50':
betas = _warmup_beta(linear_start, linear_end,
n_timestep, 0.5)
elif schedule == 'const':
betas = linear_end * np.ones(n_timestep, dtype=np.float64)
elif schedule == 'jsd': # 1/T, 1/(T-1), 1/(T-2), ..., 1
betas = 1. / np.linspace(n_timestep,
1, n_timestep, dtype=np.float64)
elif schedule == "cosine":
print('======================adopting cosine scheduler========================')
timesteps = (
torch.arange(n_timestep + 1, dtype=torch.float64) /
n_timestep + cosine_s
)
alphas = timesteps / (1 + cosine_s) * math.pi / 2
alphas = torch.cos(alphas).pow(2)
alphas = alphas / alphas[0]
betas = 1 - alphas[1:] / alphas[:-1]
betas = betas.clamp(max=0.999)
else:
raise NotImplementedError(schedule)
return betas
# gaussian diffusion trainer class
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
class GaussianDiffusion(nn.Module):
def __init__(
self,
denoise_fn,
image_size,
channels=3,
loss_type='l1',
conditional=True,
schedule_opt=None,
xT_noise_r=0.1,
seed = 1,
opt=None
):
super().__init__()
self.lq_noiselevel_val = schedule_opt["lq_noiselevel"]
self.opt = opt
self.channels = channels
self.image_size = image_size
self.denoise_fn = denoise_fn
self.loss_type = loss_type
self.conditional = conditional
self.ddim = schedule_opt['ddim']
self.xT_noise_r = xT_noise_r
self.seed = seed
if schedule_opt is not None:
pass
# self.set_new_noise_schedule(schedule_opt)
def set_loss(self, device):
if self.loss_type == 'l1':
self.loss_func = nn.L1Loss(reduction='sum').to(device)
elif self.loss_type == 'l2':
self.loss_func = nn.MSELoss(reduction='sum').to(device)
else:
raise NotImplementedError()
def betas_for_alpha_bar(
num_diffusion_timesteps,
max_beta=0.999,
alpha_transform_type="cosine",
):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
Choose from `cosine` or `exp`
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(t):
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(t):
return math.exp(t * -12.0)
else:
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
def set_new_noise_schedule(self, schedule_opt, device, num_train_timesteps=1000):
self.ddim = schedule_opt['ddim']
self.num_train_timesteps = num_train_timesteps
to_torch = partial(torch.tensor, dtype=torch.float32, device=device)
betas = make_beta_schedule(
schedule=schedule_opt['schedule'],
n_timestep=num_train_timesteps,
linear_start=schedule_opt['linear_start'],
linear_end=schedule_opt['linear_end'])
betas = betas.detach().cpu().numpy() if isinstance(
betas, torch.Tensor) else betas
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
self.sqrt_alphas_cumprod_prev = np.sqrt(
np.append(1., alphas_cumprod))
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev',
to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod',
to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod',
to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod',
to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod',
to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod',
to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * \
(1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance',
to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(
np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
self.schedule_type = schedule_opt['schedule']
if self.ddim>0: # use ddim
print('================ddim scheduler is adopted===================')
self.ddim_num_steps = schedule_opt['n_timestep']
print('==========ddim sampling steps: {}==========='.format(self.ddim_num_steps))
def predict_start_from_noise(self, x_t, t, noise):
return self.sqrt_recip_alphas_cumprod[t] * x_t - \
self.sqrt_recipm1_alphas_cumprod[t] * noise
def q_posterior(self, x_start, x_t, t):
posterior_mean = self.posterior_mean_coef1[t] * \
x_start + self.posterior_mean_coef2[t] * x_t
posterior_log_variance_clipped = self.posterior_log_variance_clipped[t]
return posterior_mean, posterior_log_variance_clipped
def p_mean_variance(self, x, t, clip_denoised: bool, condition_x=None): # ddpm sample
batch_size = x.shape[0]
noise_level = torch.FloatTensor(
[self.sqrt_alphas_cumprod_prev[t+1]]).repeat(batch_size, 1).to(x.device)
if condition_x is not None:
x_recon = self.predict_start_from_noise(
x, t=t, noise=self.denoise_fn(torch.cat([condition_x, x], dim=1), noise_level, t))
else:
x_recon = self.predict_start_from_noise(
x, t=t, noise=self.denoise_fn(x, noise_level))
if clip_denoised:
x_recon.clamp_(-1., 1.)
model_mean, posterior_log_variance = self.q_posterior(
x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_log_variance, x_recon
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, *remaining_dims = sample.shape
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, 0.995, dim=1)
s = torch.clamp(s, min=1, max=1.0) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, *remaining_dims)
sample = sample.to(dtype)
return sample
def ddim_sample(self, condition_x, img_or_shape, device, seed=1, img_s1=None):
# self.device = torch.device('cuda:0')
# self.num_train_timesteps = 2000
# self.ddim_num_steps = 50
if self.schedule_type=='linear':
self.ddim_sampling_eta = 0.8
simple_var=False
threshold_x = False # threshold_x 和 clip_x
elif self.schedule_type=='cosine':
self.ddim_sampling_eta = 0.8
simple_var=False
threshold_x = False
# torch.manual_seed(seed)
batch, total_timesteps, sampling_timesteps, eta= \
img_or_shape[0], self.num_train_timesteps, \
self.ddim_num_steps, self.ddim_sampling_eta
# ----------------------------------------------------------------
#----------------conditioned augmentation------------------
# max_noise_level = 400
# b = img_s1.shape[0]
# low_res_noise = torch.randn_like(img_s1).to(img_s1.device)
# low_res_timesteps = self.lq_noiselevel_val #
# lq_noise_level = torch.FloatTensor(
# [self.sqrt_alphas_cumprod_prev[low_res_timesteps]]).repeat(b, 1).to(img_s1.device)
# noisy_img_s1 = self.q_sample(
# x_start=img_s1, continuous_sqrt_alpha_cumprod=lq_noise_level.view(-1, 1, 1, 1), noise=low_res_noise)
noisy_img_s1 = None
#----------------------------------------------------
if simple_var:
eta = 1
ts = torch.linspace(total_timesteps, 0, (sampling_timesteps + 1)).to(device).to(torch.long)
x = torch.randn(img_or_shape).to(device)
batch_size = x.shape[0]
# net = self.denoise_fn
imgs = [x]
img_onestep = [condition_x[:,:self.channels,...]]
if self.opt['stage']!=2:
tbar = tqdm(range(1, sampling_timesteps + 1),f'seed{seed} DDIM sampling ({self.schedule_type}) with eta {eta} simple_var {simple_var}')
else:
tbar = range(1, sampling_timesteps + 1)
for i in tbar:
cur_t = ts[i - 1] - 1
prev_t = ts[i] - 1
noise_level = torch.FloatTensor(
# [self.sqrt_alphas_cumprod_prev[cur_t+1]]).repeat(batch_size, 1).to(x.device)
[self.sqrt_alphas_cumprod_prev[cur_t]]).repeat(batch_size, 1).to(x.device)
alpha_prod_t = self.alphas_cumprod[cur_t]
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else 1
beta_prod_t = 1 - alpha_prod_t
# t_tensor = torch.tensor([cur_t] * batch_size,
# dtype=torch.long).to(device).unsqueeze(1)
# pred noise
model_output = self.denoise_fn(torch.cat([condition_x, x], dim=1), noise_level)
sigma_2 = eta * (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
noise = torch.randn_like(x)
# first_term = (alpha_prod_t_prev / alpha_prod_t)**0.5 * x
# second_term = ((1 - alpha_prod_t_prev - sigma_2)**0.5 -(alpha_prod_t_prev * (1 - alpha_prod_t) / alpha_prod_t)**0.5) * model_output
# x_start = first_term - (alpha_prod_t_prev * (1 - alpha_prod_t) / alpha_prod_t)**0.5 * model_output
pred_original_sample = (x - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
if threshold_x:
pred_original_sample = self._threshold_sample(pred_original_sample)
else:
pred_original_sample = pred_original_sample.clamp(-1, 1)
pred_sample_direction = (1 - alpha_prod_t_prev - sigma_2) ** (0.5) * model_output
if simple_var:
third_term = (1 - alpha_prod_t / alpha_prod_t_prev)**0.5 * noise # var of ddpm
else:
third_term = sigma_2**0.5 * noise #ddpm
# x = first_term + second_term + third_term
x = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction + third_term
imgs.append(x)
img_onestep.append(pred_original_sample)
imgs = torch.concat(imgs, dim = 0)
img_onestep = torch.concat(img_onestep, dim = 0)
# torch.seed()
return imgs, img_onestep
@torch.no_grad()
def p_sample(self, x, t, clip_denoised=True, condition_x=None): # sr3 sample
model_mean, model_log_variance, x_recon = self.p_mean_variance(
x=x, t=t, clip_denoised=clip_denoised, condition_x=condition_x)
noise = torch.randn_like(x) if t > 0 else torch.zeros_like(x)
return model_mean + noise * (0.5 * model_log_variance).exp(), x_recon
@torch.no_grad()
def p_sample_loop(self, x_in, continous=False, seed=1, img_s1=None):
device = self.betas.device
# sample_inter = (1 | (self.num_timesteps//20))
sample_inter = 1
if not self.conditional:
shape = x_in
img = torch.randn(shape, device=device)
ret_img = img
if not self.ddim:
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps):
img, x_recon = self.p_sample(img, i)
if i % sample_inter == 0:
ret_img = torch.cat([ret_img, img], dim=0)
else:
for i in tqdm(range(0, len(self.ddim_timesteps)), desc='sampling loop time step', total=len(self.ddim_timesteps)):
ddim_t = self.ddim_timesteps[i]
img = self.ddim_sample(img, ddim_t)
if i % sample_inter == 0:
ret_img = torch.cat([ret_img, img], dim=0)
else:
x = x_in
shape = (x.shape[0], self.channels, x.shape[-2], x.shape[-1])
# ---------ddpm zT as the inital noise------------------------------------
if self.xT_noise_r>0:
# ratio = 0.1
print('adopting ddpm inversion as initial noise, ratio is {}'.format(self.xT_noise_r))
img0 = torch.randn(shape, device=device)
x_start = x_in[:, 0:1, ...]
continuous_sqrt_alpha_cumprod = torch.FloatTensor(
np.random.uniform(
self.sqrt_alphas_cumprod_prev[self.num_timesteps-1],
self.sqrt_alphas_cumprod_prev[self.num_timesteps],
size=x_start.shape[0]
)).to(x_start.device)
continuous_sqrt_alpha_cumprod = continuous_sqrt_alpha_cumprod.view(x_start.shape[0], -1)
noise = default(x_start, lambda: torch.randn_like(x_start))
img = self.q_sample(
x_start=x_start, continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod.view(-1, 1, 1, 1), noise=noise)
img = self.xT_noise_r*img + (1-self.xT_noise_r)*img0
#-------------------------------------------------------------------------
else:
img = torch.randn(shape, device=device)
ret_img = x
img_onestep = x
if self.opt['stage']!=2:
if not self.ddim:
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='ddpm sampling loop time step', total=self.num_timesteps):
img, x_recon = self.p_sample(img, i, condition_x=x)
if i % sample_inter == 0:
ret_img = torch.cat([ret_img[:,:self.channels,...], img], dim=0)
if i % sample_inter==0 or i==self.num_timesteps-1:
img_onestep = torch.cat([img_onestep[:,:self.channels,...], x_recon], dim=0)
else:
ret_img, img_onestep = self.ddim_sample(condition_x=x, img_or_shape=shape, device=device, seed=seed, img_s1=img_s1)
if continous:
return ret_img, img_onestep
else:
return ret_img[-x_in.shape[0]:], img_onestep
else:
# timestep = self.num_timesteps-1
self.ddim_num_steps = self.opt['ddim_steps']
ret_img, img_onestep = self.ddim_sample(condition_x=x, img_or_shape=shape, device=device, seed=seed, img_s1=img_s1)
# img, x_recon = self.p_sample(img, timestep, condition_x=x)
# ret_img = torch.cat([ret_img[:,:self.channels,...], x_recon], dim=0)
# img_onestep = torch.cat([img_onestep[:,:self.channels,...], x_recon], dim=0)
if continous:
return ret_img, img_onestep
else:
return ret_img[-x_in.shape[0]:], img_onestep
# for i in tqdm(range(0, len(self.ddim_timesteps)), desc='ddim sampling loop time step', total=len(self.ddim_timesteps)):
# ddim_t = self.ddim_timesteps[i]
# img = self.ddim_sample(img, ddim_t, condition_x=x)
# if i % sample_inter == 0:
# ret_img = torch.cat([ret_img[:,:self.channels,...], img], dim=0)
# 20, 8, 2hw
@torch.no_grad()
def sample(self, batch_size=1, continous=False):
image_size = self.image_size
channels = self.channels
return self.p_sample_loop((batch_size, channels, image_size, image_size), continous)
@torch.no_grad()
def super_resolution(self, x_in, continous=False, seed=1, img_s1=None): # test
return self.p_sample_loop(x_in, continous, seed=seed, img_s1=img_s1)
def q_sample(self, x_start, continuous_sqrt_alpha_cumprod, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
# random gama
return (
continuous_sqrt_alpha_cumprod * x_start +
(1 - continuous_sqrt_alpha_cumprod**2).sqrt() * noise
)
def p_losses(self, x_in, noise=None):
# x_in {'HR': img_EO[0:1], 'LR': img_s1[0:1], 'condition': img_ppb[0:1], 'SR': img_s1[0:1], 'Index': index, 'filename':filename}
x_start = x_in['HR']
[b, c, h, w] = x_start.shape
if self.opt['stage'] ==2:
t = 999
self.ddim_num_steps = self.opt['ddim_steps']
x = x_in['SR']
shape = (x.shape[0], self.channels, x.shape[-2], x.shape[-1])
ret_img, img_onestep = self.ddim_sample(condition_x=x, img_or_shape=shape, device=x.device, seed=self.seed, img_s1=x)
x_recon = ret_img[-x.shape[0]:]
else:
t = np.random.randint(1, self.num_timesteps + 1)
continuous_sqrt_alpha_cumprod = torch.FloatTensor(
np.random.uniform(
self.sqrt_alphas_cumprod_prev[t-1],
self.sqrt_alphas_cumprod_prev[t],
size=b
)).to(x_start.device)
continuous_sqrt_alpha_cumprod = continuous_sqrt_alpha_cumprod.view(b, -1)
#-----------pixel loss-------------
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(
x_start=x_start, continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod.view(-1, 1, 1, 1), noise=noise)
##low_res_timesteps in the paper, they present a new trick where they noise the lowres conditioning image, and at sample time, fix it to a certain level (0.1 or 0.3) - the unets are also made to be conditioned on this noise level
if not self.conditional:
x_recon = self.denoise_fn(x_noisy, continuous_sqrt_alpha_cumprod)
else:
x_recon, condition_feats = self.denoise_fn(
torch.cat([x_in['SR'], x_noisy], dim=1),
continuous_sqrt_alpha_cumprod,
# noisy_img_s1,
# class_label=lq_continuous_sqrt_alpha_cumprod,
return_condition=True
)
if self.opt['stage']==2:
l_pix = self.loss_func(x_start, x_recon)
else:
l_pix = self.loss_func(noise, x_recon)
x_pred = x_recon
condition_feats=None
return l_pix, x_start, x_pred, condition_feats, torch.tensor(t, device=l_pix.device)
def forward(self, x, *args, **kwargs):
return self.p_losses(x, *args, **kwargs)