File size: 7,863 Bytes
b5186fd ff51779 b5186fd 50933c0 0a90a84 b5186fd e6590aa b5186fd e6590aa fccf1b6 e6590aa fccf1b6 e6590aa fccf1b6 ff51779 fccf1b6 ff51779 fccf1b6 b5186fd e6590aa b5186fd ff51779 b5186fd ff51779 fb923f7 b5186fd e6590aa b5186fd e6590aa b5186fd e6590aa b5186fd e6590aa b5186fd e6590aa b5186fd e6590aa b5186fd e6590aa b5186fd 0c6111d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
from fastapi import FastAPI
import joblib
import pandas as pd
from datetime import datetime
from typing import Literal, Annotated
from pydantic import BaseModel, Field
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
import os
import requests
HF_REPO = "samithcs/heart-rate-models"
HEART_MODEL_FILENAME = "Heart_Rate_Predictor_model.joblib"
ANOMALY_MODEL_FILENAME = "Anomaly_Detector_model.joblib"
MODEL_DIR = os.path.join("artifacts", "model_trainer")
os.makedirs(MODEL_DIR, exist_ok=True)
def download_from_hf(filename):
local_path = os.path.join(MODEL_DIR, filename)
if os.path.exists(local_path):
print(f"✅ {filename} already exists at {local_path}")
return local_path
url = f"https://huggingface.co/{HF_REPO}/resolve/main/{filename}"
print(f"⬇️ Downloading {filename} from {url} ...")
with requests.get(url, stream=True) as r:
r.raise_for_status()
with open(local_path, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
print(f"✅ Downloaded {filename} to {local_path}")
return local_path
download_from_hf(HEART_MODEL_FILENAME)
download_from_hf(ANOMALY_MODEL_FILENAME)
# ===============================
# Define request schemas
# ===============================
class HeartRateInput(BaseModel):
age: Annotated[int, Field(..., gt=0, lt=120, description="The age of the user")]
gender: Annotated[Literal['M', 'F'], Field(..., description="Gender of the user")]
weight_kg: Annotated[float, Field(..., gt=0, description='Weight of the user')]
height_cm: Annotated[float, Field(..., gt=0, lt=250, description='Height of the user')]
bmi: Annotated[float, Field(..., gt=0, lt=100, description='BMI of the user')]
fitness_level: Annotated[Literal['lightly_active', 'fairly_active', 'sedentary', 'very_active'], Field(..., description="Fitness level")]
performance_level: Annotated[Literal['low', 'moderate', 'high'], Field(..., description="Performance level")]
resting_hr: Annotated[int, Field(..., gt=0, lt=120, description="Resting HR")]
max_hr: Annotated[int, Field(..., gt=0, lt=220, description="Max HR")]
activity_type: Annotated[Literal['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise'], Field(..., description="Activity type")]
activity_intensity: Annotated[float, Field(..., gt=0.0, description="Activity intensity")]
steps_5min: Annotated[int, Field(..., gt=0, description="Steps in 5 min")]
calories_5min: Annotated[float, Field(..., gt=0, description="Calories in 5 min")]
hrv_rmssd: Annotated[float, Field(..., gt=0, description="Heart rate variability RMSSD")]
stress_score: Annotated[int, Field(..., gt=0, lt=100, description="Stress score")]
signal_quality: Annotated[float, Field(..., gt=0, description="Signal quality")]
skin_temperature: Annotated[float, Field(..., gt=0, description="Skin temperature")]
device_battery: Annotated[int, Field(..., gt=0, description="Device battery")]
elevation_gain: Annotated[int, Field(..., ge=0, description="Elevation gain")]
sleep_stage: Annotated[Literal['light_sleep', 'deep_sleep', 'rem_sleep'], Field(..., description="Sleep stage")]
date: Annotated[datetime, Field(..., description="Timestamp")]
class AnomalyInput(BaseModel):
heart_rate: Annotated[float, Field(..., gt=0.0, description="Heart rate")]
resting_hr_baseline: Annotated[int, Field(..., gt=0, lt=120, description="Resting HR baseline")]
activity_type: Annotated[Literal['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise'], Field(..., description="Activity type")]
activity_intensity: Annotated[float, Field(..., gt=0, description="Activity intensity")]
steps_5min: Annotated[int, Field(..., gt=0, description="Steps in 5 min")]
calories_5min: Annotated[float, Field(..., gt=0, description="Calories in 5 min")]
hrv_rmssd: Annotated[float, Field(..., gt=0, description="Heart rate variability RMSSD")]
stress_score: Annotated[int, Field(..., gt=0, lt=100, description="Stress score")]
confidence_score: Annotated[float, Field(..., gt=0.0, description="Confidence score")]
signal_quality: Annotated[float, Field(..., gt=0, description="Signal quality")]
skin_temperature: Annotated[float, Field(..., gt=0, description="Skin temperature")]
device_battery: Annotated[int, Field(..., gt=0, description="Device battery")]
elevation_gain: Annotated[int, Field(..., ge=0, description="Elevation gain")]
sleep_stage: Annotated[Literal['light_sleep', 'deep_sleep', 'rem_sleep'], Field(..., description="Sleep stage")]
date: Annotated[datetime, Field(..., description="Timestamp")]
# ===============================
# Load models
# ===============================
MODEL_DIR = os.path.join("artifacts", "model_trainer")
HEART_MODEL_PATH = os.path.join(MODEL_DIR, "Heart_Rate_Predictor_model.joblib")
ANOMALY_MODEL_PATH = os.path.join(MODEL_DIR, "Anomaly_Detector_model.joblib")
heart_model_artifacts = joblib.load(HEART_MODEL_PATH)
heart_model = heart_model_artifacts['model']
heart_features = heart_model_artifacts['feature_columns']
anomaly_model_artifacts = joblib.load(ANOMALY_MODEL_PATH)
anomaly_model = anomaly_model_artifacts['model']
anomaly_features = anomaly_model_artifacts['feature_columns']
# ===============================
# Create FastAPI app
# ===============================
app = FastAPI(title="Health Monitoring API")
@app.get("/")
def home():
return {"message": "Health Monitoring API is running!"}
# ===============================
# Utility: preprocess features
# ===============================
def preprocess_heart_features(data_dict: dict) -> pd.DataFrame:
# Encode datetime
data_dict['date_encoded'] = data_dict['date'].timestamp()
# One-hot categorical encodings
data_dict['gender_M'] = 1 if data_dict['gender'] == 'M' else 0
data_dict['gender_F'] = 1 if data_dict['gender'] == 'F' else 0
for act in ['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise']:
data_dict[f"activity_type_{act}"] = 1 if data_dict['activity_type'] == act else 0
for stage in ['light_sleep', 'deep_sleep', 'rem_sleep']:
data_dict[f"sleep_stage_{stage}"] = 1 if data_dict['sleep_stage'] == stage else 0
# Restrict to model features only
return pd.DataFrame([{f: data_dict.get(f, 0) for f in heart_features}])
def preprocess_anomaly_features(data_dict: dict) -> pd.DataFrame:
data_dict['date_encoded'] = data_dict['date'].timestamp()
for act in ['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise']:
data_dict[f"activity_type_{act}"] = 1 if data_dict['activity_type'] == act else 0
for stage in ['light_sleep', 'deep_sleep', 'rem_sleep']:
data_dict[f"sleep_stage_{stage}"] = 1 if data_dict['sleep_stage'] == stage else 0
return pd.DataFrame([{f: data_dict.get(f, 0) for f in anomaly_features}])
# ===============================
# Endpoints
# ===============================
@app.post("/predict_heart_rate")
def predict_heart_rate(input_data: HeartRateInput):
try:
data_dict = input_data.model_dump()
X = preprocess_heart_features(data_dict)
prediction = heart_model.predict(X)[0]
return {"heart_rate_prediction": float(prediction)}
except Exception as e:
return {"error": str(e)}
@app.post("/detect_anomaly")
def detect_anomaly(input_data: AnomalyInput):
try:
data_dict = input_data.model_dump()
X = preprocess_anomaly_features(data_dict)
prediction = anomaly_model.predict(X)[0]
return {"anomaly_detected": bool(prediction)}
except Exception as e:
return {"error": str(e)}
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|