File size: 7,863 Bytes
b5186fd
ff51779
 
b5186fd
 
 
50933c0
0a90a84
 
 
b5186fd
e6590aa
 
 
 
b5186fd
 
 
 
e6590aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fccf1b6
e6590aa
fccf1b6
e6590aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fccf1b6
ff51779
 
 
fccf1b6
ff51779
 
 
fccf1b6
b5186fd
e6590aa
b5186fd
ff51779
b5186fd
ff51779
 
 
fb923f7
b5186fd
e6590aa
b5186fd
 
e6590aa
b5186fd
e6590aa
 
 
 
 
 
 
 
 
 
 
 
 
 
b5186fd
 
 
e6590aa
 
 
 
 
 
 
 
b5186fd
 
 
 
 
 
 
e6590aa
 
b5186fd
 
 
 
 
e6590aa
b5186fd
 
 
e6590aa
 
b5186fd
 
 
 
0c6111d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from fastapi import FastAPI
import joblib
import pandas as pd
from datetime import datetime
from typing import Literal, Annotated
from pydantic import BaseModel, Field

import warnings
warnings.filterwarnings("ignore", category=UserWarning)



import os
import requests

HF_REPO = "samithcs/heart-rate-models"
HEART_MODEL_FILENAME = "Heart_Rate_Predictor_model.joblib"
ANOMALY_MODEL_FILENAME = "Anomaly_Detector_model.joblib"


MODEL_DIR = os.path.join("artifacts", "model_trainer")
os.makedirs(MODEL_DIR, exist_ok=True)

def download_from_hf(filename):
    local_path = os.path.join(MODEL_DIR, filename)

  
    if os.path.exists(local_path):
        print(f"✅ {filename} already exists at {local_path}")
        return local_path

 
    url = f"https://huggingface.co/{HF_REPO}/resolve/main/{filename}"
    print(f"⬇️ Downloading {filename} from {url} ...")
    with requests.get(url, stream=True) as r:
        r.raise_for_status()
        with open(local_path, "wb") as f:
            for chunk in r.iter_content(chunk_size=8192):
                f.write(chunk)
    print(f"✅ Downloaded {filename} to {local_path}")
    return local_path



download_from_hf(HEART_MODEL_FILENAME)
download_from_hf(ANOMALY_MODEL_FILENAME)





# ===============================
# Define request schemas
# ===============================

class HeartRateInput(BaseModel):
    age: Annotated[int, Field(..., gt=0, lt=120, description="The age of the user")]
    gender: Annotated[Literal['M', 'F'], Field(..., description="Gender of the user")]
    weight_kg: Annotated[float, Field(..., gt=0, description='Weight of the user')]
    height_cm: Annotated[float, Field(..., gt=0, lt=250, description='Height of the user')]
    bmi: Annotated[float, Field(..., gt=0, lt=100, description='BMI of the user')]
    fitness_level: Annotated[Literal['lightly_active', 'fairly_active', 'sedentary', 'very_active'], Field(..., description="Fitness level")]
    performance_level: Annotated[Literal['low', 'moderate', 'high'], Field(..., description="Performance level")]
    resting_hr: Annotated[int, Field(..., gt=0, lt=120, description="Resting HR")]
    max_hr: Annotated[int, Field(..., gt=0, lt=220, description="Max HR")]
    activity_type: Annotated[Literal['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise'], Field(..., description="Activity type")]
    activity_intensity: Annotated[float, Field(..., gt=0.0, description="Activity intensity")]
    steps_5min: Annotated[int, Field(..., gt=0, description="Steps in 5 min")]
    calories_5min: Annotated[float, Field(..., gt=0, description="Calories in 5 min")]
    hrv_rmssd: Annotated[float, Field(..., gt=0, description="Heart rate variability RMSSD")]
    stress_score: Annotated[int, Field(..., gt=0, lt=100, description="Stress score")]
    signal_quality: Annotated[float, Field(..., gt=0, description="Signal quality")]
    skin_temperature: Annotated[float, Field(..., gt=0, description="Skin temperature")]
    device_battery: Annotated[int, Field(..., gt=0, description="Device battery")]
    elevation_gain: Annotated[int, Field(..., ge=0, description="Elevation gain")]
    sleep_stage: Annotated[Literal['light_sleep', 'deep_sleep', 'rem_sleep'], Field(..., description="Sleep stage")]
    date: Annotated[datetime, Field(..., description="Timestamp")]


class AnomalyInput(BaseModel):
    heart_rate: Annotated[float, Field(..., gt=0.0, description="Heart rate")]
    resting_hr_baseline: Annotated[int, Field(..., gt=0, lt=120, description="Resting HR baseline")]
    activity_type: Annotated[Literal['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise'], Field(..., description="Activity type")]
    activity_intensity: Annotated[float, Field(..., gt=0, description="Activity intensity")]
    steps_5min: Annotated[int, Field(..., gt=0, description="Steps in 5 min")]
    calories_5min: Annotated[float, Field(..., gt=0, description="Calories in 5 min")]
    hrv_rmssd: Annotated[float, Field(..., gt=0, description="Heart rate variability RMSSD")]
    stress_score: Annotated[int, Field(..., gt=0, lt=100, description="Stress score")]
    confidence_score: Annotated[float, Field(..., gt=0.0, description="Confidence score")]
    signal_quality: Annotated[float, Field(..., gt=0, description="Signal quality")]
    skin_temperature: Annotated[float, Field(..., gt=0, description="Skin temperature")]
    device_battery: Annotated[int, Field(..., gt=0, description="Device battery")]
    elevation_gain: Annotated[int, Field(..., ge=0, description="Elevation gain")]
    sleep_stage: Annotated[Literal['light_sleep', 'deep_sleep', 'rem_sleep'], Field(..., description="Sleep stage")]
    date: Annotated[datetime, Field(..., description="Timestamp")]

# ===============================
# Load models
# ===============================

MODEL_DIR = os.path.join("artifacts", "model_trainer")


HEART_MODEL_PATH = os.path.join(MODEL_DIR, "Heart_Rate_Predictor_model.joblib")
ANOMALY_MODEL_PATH = os.path.join(MODEL_DIR, "Anomaly_Detector_model.joblib")


heart_model_artifacts = joblib.load(HEART_MODEL_PATH)
heart_model = heart_model_artifacts['model']
heart_features = heart_model_artifacts['feature_columns']

anomaly_model_artifacts = joblib.load(ANOMALY_MODEL_PATH)
anomaly_model = anomaly_model_artifacts['model']
anomaly_features = anomaly_model_artifacts['feature_columns']

# ===============================
# Create FastAPI app
# ===============================
app = FastAPI(title="Health Monitoring API")

@app.get("/")
def home():
    return {"message": "Health Monitoring API is running!"}

# ===============================
# Utility: preprocess features
# ===============================
def preprocess_heart_features(data_dict: dict) -> pd.DataFrame:
    # Encode datetime
    data_dict['date_encoded'] = data_dict['date'].timestamp()

    # One-hot categorical encodings
    data_dict['gender_M'] = 1 if data_dict['gender'] == 'M' else 0
    data_dict['gender_F'] = 1 if data_dict['gender'] == 'F' else 0

    for act in ['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise']:
        data_dict[f"activity_type_{act}"] = 1 if data_dict['activity_type'] == act else 0

    for stage in ['light_sleep', 'deep_sleep', 'rem_sleep']:
        data_dict[f"sleep_stage_{stage}"] = 1 if data_dict['sleep_stage'] == stage else 0

    # Restrict to model features only
    return pd.DataFrame([{f: data_dict.get(f, 0) for f in heart_features}])


def preprocess_anomaly_features(data_dict: dict) -> pd.DataFrame:
    data_dict['date_encoded'] = data_dict['date'].timestamp()

    for act in ['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise']:
        data_dict[f"activity_type_{act}"] = 1 if data_dict['activity_type'] == act else 0

    for stage in ['light_sleep', 'deep_sleep', 'rem_sleep']:
        data_dict[f"sleep_stage_{stage}"] = 1 if data_dict['sleep_stage'] == stage else 0

    return pd.DataFrame([{f: data_dict.get(f, 0) for f in anomaly_features}])

# ===============================
# Endpoints
# ===============================
@app.post("/predict_heart_rate")
def predict_heart_rate(input_data: HeartRateInput):
    try:
        data_dict = input_data.model_dump()
        X = preprocess_heart_features(data_dict)
        prediction = heart_model.predict(X)[0]
        return {"heart_rate_prediction": float(prediction)}
    except Exception as e:
        return {"error": str(e)}


@app.post("/detect_anomaly")
def detect_anomaly(input_data: AnomalyInput):
    try:
        data_dict = input_data.model_dump()
        X = preprocess_anomaly_features(data_dict)
        prediction = anomaly_model.predict(X)[0]
        return {"anomaly_detected": bool(prediction)}
    except Exception as e:
        return {"error": str(e)}



if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)