|
|
from fastapi import FastAPI |
|
|
import joblib |
|
|
import pandas as pd |
|
|
from datetime import datetime |
|
|
from typing import Literal, Annotated |
|
|
from pydantic import BaseModel, Field |
|
|
|
|
|
import warnings |
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
import requests |
|
|
|
|
|
HF_REPO = "samithcs/heart-rate-models" |
|
|
HEART_MODEL_FILENAME = "Heart_Rate_Predictor_model.joblib" |
|
|
ANOMALY_MODEL_FILENAME = "Anomaly_Detector_model.joblib" |
|
|
|
|
|
|
|
|
MODEL_DIR = os.path.join("artifacts", "model_trainer") |
|
|
os.makedirs(MODEL_DIR, exist_ok=True) |
|
|
|
|
|
def download_from_hf(filename): |
|
|
local_path = os.path.join(MODEL_DIR, filename) |
|
|
|
|
|
|
|
|
if os.path.exists(local_path): |
|
|
print(f"✅ {filename} already exists at {local_path}") |
|
|
return local_path |
|
|
|
|
|
|
|
|
url = f"https://huggingface.co/{HF_REPO}/resolve/main/{filename}" |
|
|
print(f"⬇️ Downloading {filename} from {url} ...") |
|
|
with requests.get(url, stream=True) as r: |
|
|
r.raise_for_status() |
|
|
with open(local_path, "wb") as f: |
|
|
for chunk in r.iter_content(chunk_size=8192): |
|
|
f.write(chunk) |
|
|
print(f"✅ Downloaded {filename} to {local_path}") |
|
|
return local_path |
|
|
|
|
|
|
|
|
|
|
|
download_from_hf(HEART_MODEL_FILENAME) |
|
|
download_from_hf(ANOMALY_MODEL_FILENAME) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class HeartRateInput(BaseModel): |
|
|
age: Annotated[int, Field(..., gt=0, lt=120, description="The age of the user")] |
|
|
gender: Annotated[Literal['M', 'F'], Field(..., description="Gender of the user")] |
|
|
weight_kg: Annotated[float, Field(..., gt=0, description='Weight of the user')] |
|
|
height_cm: Annotated[float, Field(..., gt=0, lt=250, description='Height of the user')] |
|
|
bmi: Annotated[float, Field(..., gt=0, lt=100, description='BMI of the user')] |
|
|
fitness_level: Annotated[Literal['lightly_active', 'fairly_active', 'sedentary', 'very_active'], Field(..., description="Fitness level")] |
|
|
performance_level: Annotated[Literal['low', 'moderate', 'high'], Field(..., description="Performance level")] |
|
|
resting_hr: Annotated[int, Field(..., gt=0, lt=120, description="Resting HR")] |
|
|
max_hr: Annotated[int, Field(..., gt=0, lt=220, description="Max HR")] |
|
|
activity_type: Annotated[Literal['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise'], Field(..., description="Activity type")] |
|
|
activity_intensity: Annotated[float, Field(..., gt=0.0, description="Activity intensity")] |
|
|
steps_5min: Annotated[int, Field(..., gt=0, description="Steps in 5 min")] |
|
|
calories_5min: Annotated[float, Field(..., gt=0, description="Calories in 5 min")] |
|
|
hrv_rmssd: Annotated[float, Field(..., gt=0, description="Heart rate variability RMSSD")] |
|
|
stress_score: Annotated[int, Field(..., gt=0, lt=100, description="Stress score")] |
|
|
signal_quality: Annotated[float, Field(..., gt=0, description="Signal quality")] |
|
|
skin_temperature: Annotated[float, Field(..., gt=0, description="Skin temperature")] |
|
|
device_battery: Annotated[int, Field(..., gt=0, description="Device battery")] |
|
|
elevation_gain: Annotated[int, Field(..., ge=0, description="Elevation gain")] |
|
|
sleep_stage: Annotated[Literal['light_sleep', 'deep_sleep', 'rem_sleep'], Field(..., description="Sleep stage")] |
|
|
date: Annotated[datetime, Field(..., description="Timestamp")] |
|
|
|
|
|
|
|
|
class AnomalyInput(BaseModel): |
|
|
heart_rate: Annotated[float, Field(..., gt=0.0, description="Heart rate")] |
|
|
resting_hr_baseline: Annotated[int, Field(..., gt=0, lt=120, description="Resting HR baseline")] |
|
|
activity_type: Annotated[Literal['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise'], Field(..., description="Activity type")] |
|
|
activity_intensity: Annotated[float, Field(..., gt=0, description="Activity intensity")] |
|
|
steps_5min: Annotated[int, Field(..., gt=0, description="Steps in 5 min")] |
|
|
calories_5min: Annotated[float, Field(..., gt=0, description="Calories in 5 min")] |
|
|
hrv_rmssd: Annotated[float, Field(..., gt=0, description="Heart rate variability RMSSD")] |
|
|
stress_score: Annotated[int, Field(..., gt=0, lt=100, description="Stress score")] |
|
|
confidence_score: Annotated[float, Field(..., gt=0.0, description="Confidence score")] |
|
|
signal_quality: Annotated[float, Field(..., gt=0, description="Signal quality")] |
|
|
skin_temperature: Annotated[float, Field(..., gt=0, description="Skin temperature")] |
|
|
device_battery: Annotated[int, Field(..., gt=0, description="Device battery")] |
|
|
elevation_gain: Annotated[int, Field(..., ge=0, description="Elevation gain")] |
|
|
sleep_stage: Annotated[Literal['light_sleep', 'deep_sleep', 'rem_sleep'], Field(..., description="Sleep stage")] |
|
|
date: Annotated[datetime, Field(..., description="Timestamp")] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MODEL_DIR = os.path.join("artifacts", "model_trainer") |
|
|
|
|
|
|
|
|
HEART_MODEL_PATH = os.path.join(MODEL_DIR, "Heart_Rate_Predictor_model.joblib") |
|
|
ANOMALY_MODEL_PATH = os.path.join(MODEL_DIR, "Anomaly_Detector_model.joblib") |
|
|
|
|
|
|
|
|
heart_model_artifacts = joblib.load(HEART_MODEL_PATH) |
|
|
heart_model = heart_model_artifacts['model'] |
|
|
heart_features = heart_model_artifacts['feature_columns'] |
|
|
|
|
|
anomaly_model_artifacts = joblib.load(ANOMALY_MODEL_PATH) |
|
|
anomaly_model = anomaly_model_artifacts['model'] |
|
|
anomaly_features = anomaly_model_artifacts['feature_columns'] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app = FastAPI(title="Health Monitoring API") |
|
|
|
|
|
@app.get("/") |
|
|
def home(): |
|
|
return {"message": "Health Monitoring API is running!"} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def preprocess_heart_features(data_dict: dict) -> pd.DataFrame: |
|
|
|
|
|
data_dict['date_encoded'] = data_dict['date'].timestamp() |
|
|
|
|
|
|
|
|
data_dict['gender_M'] = 1 if data_dict['gender'] == 'M' else 0 |
|
|
data_dict['gender_F'] = 1 if data_dict['gender'] == 'F' else 0 |
|
|
|
|
|
for act in ['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise']: |
|
|
data_dict[f"activity_type_{act}"] = 1 if data_dict['activity_type'] == act else 0 |
|
|
|
|
|
for stage in ['light_sleep', 'deep_sleep', 'rem_sleep']: |
|
|
data_dict[f"sleep_stage_{stage}"] = 1 if data_dict['sleep_stage'] == stage else 0 |
|
|
|
|
|
|
|
|
return pd.DataFrame([{f: data_dict.get(f, 0) for f in heart_features}]) |
|
|
|
|
|
|
|
|
def preprocess_anomaly_features(data_dict: dict) -> pd.DataFrame: |
|
|
data_dict['date_encoded'] = data_dict['date'].timestamp() |
|
|
|
|
|
for act in ['sleeping', 'walking', 'resting', 'light', 'commuting', 'exercise']: |
|
|
data_dict[f"activity_type_{act}"] = 1 if data_dict['activity_type'] == act else 0 |
|
|
|
|
|
for stage in ['light_sleep', 'deep_sleep', 'rem_sleep']: |
|
|
data_dict[f"sleep_stage_{stage}"] = 1 if data_dict['sleep_stage'] == stage else 0 |
|
|
|
|
|
return pd.DataFrame([{f: data_dict.get(f, 0) for f in anomaly_features}]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/predict_heart_rate") |
|
|
def predict_heart_rate(input_data: HeartRateInput): |
|
|
try: |
|
|
data_dict = input_data.model_dump() |
|
|
X = preprocess_heart_features(data_dict) |
|
|
prediction = heart_model.predict(X)[0] |
|
|
return {"heart_rate_prediction": float(prediction)} |
|
|
except Exception as e: |
|
|
return {"error": str(e)} |
|
|
|
|
|
|
|
|
@app.post("/detect_anomaly") |
|
|
def detect_anomaly(input_data: AnomalyInput): |
|
|
try: |
|
|
data_dict = input_data.model_dump() |
|
|
X = preprocess_anomaly_features(data_dict) |
|
|
prediction = anomaly_model.predict(X)[0] |
|
|
return {"anomaly_detected": bool(prediction)} |
|
|
except Exception as e: |
|
|
return {"error": str(e)} |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import uvicorn |
|
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|
|