GLM-5

πŸ‘‹ Join our WeChat or Discord community.
πŸ“– Check out the GLM-5 technical blog.
πŸ“ Use GLM-5 API services on Z.ai API Platform.
πŸ‘‰ One click to GLM-5.

Introduction

We are launching GLM-5, targeting complex systems engineering and long-horizon agentic tasks. Scaling is still one of the most important ways to improve the intelligence efficiency of Artificial General Intelligence (AGI). Compared to GLM-4.5, GLM-5 scales from 355B parameters (32B active) to 744B parameters (40B active), and increases pre-training data from 23T to 28.5T tokens. GLM-5 also integrates DeepSeek Sparse Attention (DSA), largely reducing deployment cost while preserving long-context capacity.

Reinforcement learning aims to bridge the gap between competence and excellence in pre-trained models. However, deploying it at scale for LLMs is a challenge due to the RL training inefficiency. To this end, we developed slime, a novel asynchronous RL infrastructure that substantially improves training throughput and efficiency, enabling more fine-grained post-training iterations. With advances in both pre-training and post-training, GLM-5 delivers significant improvement compared to GLM-4.7 across a wide range of academic benchmarks and achieves best-in-class performance among all open-source models in the world on reasoning, coding, and agentic tasks, closing the gap with frontier models.

Benchmark

GLM-5 GLM-4.7 DeepSeek-V3.2 Kimi K2.5 Claude Opus 4.5 Gemini 3 Pro GPT-5.2 (xhigh)
HLE 30.5 24.8 25.1 31.5 28.4 37.2 35.4
HLE (w/ Tools) 50.4 42.8 40.8 51.8 43.4* 45.8* 45.5*
AIME 2026 I 92.7 92.9 92.7 92.5 93.3 90.6 -
HMMT Nov. 2025 96.9 93.5 90.2 91.1 91.7 93.0 97.1
IMOAnswerBench 82.5 82.0 78.3 81.8 78.5 83.3 86.3
GPQA-Diamond 86.0 85.7 82.4 87.6 87.0 91.9 92.4
SWE-bench Verified 77.8 73.8 73.1 76.8 80.9 76.2 80.0
SWE-bench Multilingual 73.3 66.7 70.2 73.0 77.5 65.0 72.0
Terminal-Bench 2.0 (Terminus 2) 56.2 / 60.7 † 41.0 39.3 50.8 59.3 54.2 54.0
Terminal-Bench 2.0 (Claude Code) 56.2 / 61.1 † 32.8 46.4 - 57.9 - -
CyberGym 43.2 23.5 17.3 41.3 50.6 39.9 -
BrowseComp 62.0 52.0 51.4 60.6 37.0 37.8 -
BrowseComp (w/ Context Manage) 75.9 67.5 67.6 74.9 67.8 59.2 65.8
BrowseComp-Zh 72.7 66.6 65.0 62.3 62.4 66.8 76.1
τ²-Bench 89.7 87.4 85.3 80.2 91.6 90.7 85.5
MCP-Atlas (Public Set) 67.8 52.0 62.2 63.8 65.2 66.6 68.0
Tool-Decathlon 38.0 23.8 35.2 27.8 43.5 36.4 46.3
Vending Bench 2 $4,432.12 $2,376.82 $1,034.00 $1,198.46 $4,967.06 $5,478.16 $3,591.33

*: refers to their scores of full set.

†: A verified version of Terminal-Bench 2.0 that fixes some ambiguous instructions. See footnote for more evaluation details.

Footnote

  • Humanity’s Last Exam (HLE) & other reasoning tasks: We evaluate with a maximum generation length of 131,072 tokens (temperature=1.0, top_p=0.95, max_new_tokens=131072). By default, we report the text-only subset; results marked with * are from the full set. We use GPT-5.2 (medium) as the judge model. For HLE-with-tools, we use a maximum context length of 202,752 tokens.
  • SWE-bench & SWE-bench Multilingual: We run the SWE-bench suite with OpenHands using a tailored instruction prompt. Settings: temperature=0.7, top_p=0.95, max_new_tokens=16384, with a 200K context window.
  • BrowserComp: Without context management, we retain details from the most recent 5 turns. With context management, we use the same discard-all strategy as DeepSeek-v3.2 and Kimi K2.5.
  • Terminal-Bench 2.0 (Terminus 2): We evaluate with the Terminus framework using timeout=2h, temperature=0.7, top_p=1.0, max_new_tokens=8192, with a 128K context window. Resource limits are capped at 16 CPUs and 32 GB RAM.
  • Terminal-Bench 2.0 (Claude Code): We evaluate in Claude Code 2.1.14 (think mode, default effort) with temperature=1.0, top_p=0.95, max_new_tokens=65536. We remove wall-clock time limits due to generation speed, while preserving per-task CPU and memory constraints. Scores are averaged over 5 runs. We fix environment issues introduced by Claude Code and also report results on a verified Terminal-Bench 2.0 dataset that resolves ambiguous instructions (see: https://huggingface.co/datasets/zai-org/terminal-bench-2-verified).
  • CyberGym: We evaluate in Claude Code 2.1.18 (think mode, no web tools) with (temperature=1.0, top_p=1.0, max_new_tokens=32000) and a 250-minute timeout per task. Results are single-run Pass@1 over 1,507 tasks.
  • MCP-Atlas: All models are evaluated in think mode on the 500-task public subset with a 10-minute timeout per task. We use Gemini 3 Pro as the judge model.
  • τ²-bench: We add a small prompt adjustment in Retail and Telecom to avoid failures caused by premature user termination. For Airline, we apply the domain fixes proposed in the Claude Opus 4.5 system card.
  • Vending Bench 2: Runs are conducted independently by Andon Labs.

Serve GLM-5 Locally

Prepare environment

vLLM, SGLang, and xLLM all support local deployment of GLM-5. A simple deployment guide is provided here.

  • vLLM

    Using Docker as:

    docker pull vllm/vllm-openai:nightly 
    

    or using pip:

    pip install -U vllm --pre --index-url https://pypi.org/simple --extra-index-url https://wheels.vllm.ai/nightly
    

    then upgrade transformers:

    pip install git+https://github.com/huggingface/transformers.git
    
  • SGLang

    Using Docker as:

    docker pull lmsysorg/sglang:glm5-hopper # For Hopper GPU
    docker pull lmsysorg/sglang:glm5-blackwell # For Blackwell GPU
    

Deploy

  • vLLM

    vllm serve zai-org/GLM-5-FP8 \
         --tensor-parallel-size 8 \
         --gpu-memory-utilization 0.85 \
         --speculative-config.method mtp \
         --speculative-config.num_speculative_tokens 1 \
         --tool-call-parser glm47 \
         --reasoning-parser glm45 \
         --enable-auto-tool-choice \
         --served-model-name glm-5-fp8
    

    Check the recipes for more details.

  • SGLang

    python3 -m sglang.launch_server \
      --model-path zai-org/GLM-5-FP8 \
      --tp-size 8 \
      --tool-call-parser glm47  \
      --reasoning-parser glm45 \
      --speculative-algorithm EAGLE \
      --speculative-num-steps 3 \
      --speculative-eagle-topk 1 \
      --speculative-num-draft-tokens 4 \
      --mem-fraction-static 0.85 \
      --served-model-name glm-5-fp8
    

    Check the sglang cookbook for more details.

  • xLLM and other Ascend NPU

    Please check the deployment guide here.

Citation

Our technical report is coming soon.

Downloads last month
1,548
Safetensors
Model size
754B params
Tensor type
BF16
Β·
F32
Β·
Inference Providers NEW
Input a message to start chatting with zai-org/GLM-5.

Model tree for zai-org/GLM-5

Finetunes
2 models
Quantizations
3 models

Spaces using zai-org/GLM-5 5

Collection including zai-org/GLM-5